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In the experiment of Schwarz and Hora, modulated electrons can radiate substantially more
light than unmodulated electrons only if the modulated electron wave function contains many
plane-wave components. The radiated light must be coherent if it is emitted from a one-elec—
tron state or collectively from a product of modulated one-electron states. These conclusions
are independent of the mechanisms of excitation and radiation.

Schwarz and Hora' have reported that when a beam
of electrons was irradiated with laser light and then
allowed to strike a target, light was emitted with
the laser frequency v. It has subsequently been sug-
gested® that the emitted light may be accounted for
by supposing that some of the irradiated electrons
acquired a modulated wave function of the form

p=exp [i(kex — wot)] +c,exp[i(k,x - w,b)]

+c.exp[i(ex - w1, 1

where 7w, is the energy of the electron before irra-
diation, w:=uwy+v, and each wave number % obeys
k? =2mw/F% with the appropriate frequency w. How-
ever, the mechanism by which such a modulated
electron beam might produce the required radiation
effects remains in doubt, 2—*

Some insight into this problem is obtained by ex-
amining the difference between modulated and un-
modulated electrons. Given an electron beam inci-
dent upon a measuring apparatus, can this apparatus
distinguish between modulated and unmodulated
electrons by giving a large signal in one case and a
small one in the other? We take a very general and
model-independent point of view. Suppose that a

beam of electrons is incident upon an unspecified

‘black box, and that a measurement is made at a

later time. We ask under what conditions the prob-
ability of observing some unspecified final state of
the measuring apparatus can be much larger for a
modulated electron beam than for an unmodulated
beam. We rely entirely upon two principles of quan-
tum mechanics, the superposition principle and the
energy-conservation principle. We find severe re-
strictions from the superposition principle, which
asserts that any transition probability amplitude for
the case of an incident modulated electron is the sum
of the transition probability amplitudes for its com-
ponent plane-wave states. No large enhancement of
the transition probability can occur unless the mod-
ulated state contains a large number of plane-wave
components. Therefore, the three-component wave
function (1) is inadequate. If the experiment mea-
sures transition rates to final states of definite
energy,® conservation of energy additionally forbids
any great enhancement of that transition probability
for initial states which are products of modulated
one-electron states.

Consider first a system that consists initially of a
single electron and a black box, with the electron in.
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a plane-wave state of wave number % and with the
black box in some state B. Let A (k, B— F;t) be the
probability amplitude for finding the system in some
final state F at a later time #. The final state may
include radiation or other reaction products.

Next consider the case in which the electron is in a
modulated state i, that is the sum of a finite number
of plane-wave states® ¢,, namely,

‘l’u:Zka‘/’k @)
2] e l?=1. 3)

(The ¢, and y,are understood to be normalized in the
same way.) Then, according to the superposition
principle, the probability amplitude A (M, B— F;¢)

for finding the system in the final state F at a later
time ¢ is given by

AM,B— Fit)= 2 c, Ak, B— F;t). 4)

The transition probabilities W(z) from the plane-
wave states are equal to the absolute squares of the
amplitudes A(z, B— F;t). The transition probability
W(mod) from the modulated state is given by

W(mod)= |A(M, B— F;t) |®
= |25 cy Ak, B—~ F;1) |2, (5)
It follows from the Schwarz inequality that
W(mod) < | ¢, | (| Ak, B~ F;t)|?) ‘
=23 W (k). (6)

Inequality (6) implies that the enhancement of the
transition probabilities is limited by

W{mod) / W(plane) <N, (n

where W(plane) is the greatest of the plane-wave
transition probabilities W(Z), and N is the mumber of
plane-wave components in the modulated electron
wave function.

This result shows that a large enhancement can be
obtained only when a large number of side bands ap-
pear in the modulated wave function of the electron.
There is no possibility of explaining a large enhance-
ment by the use of a single-electron wave function
with only a few side bands, such as that of Eq. (1).
This conclusion, which follows from the superposi-
tion principle alone, expresses the physical fact that
a wave function that is a superposition of only a few
components cannot produce large effects of construc-
tive interference between those components. The
magnitude of the effect of constructive interference
is limited by the number of components.

We obtain an additional restriction by invoking con-
servation of energy. Suppose the initial state B of the
black box and final state F of the entire system are
both eigenstates of the energy; then all of the tran-
_sition amplitudes A(g, B — F;t) vanish except for the
one value of k that conserves the total energy. There
is, therefore, only one nonvanishing term in the sum

in Eq. (5), and the transition probability cannot be
enhanced by modulating the initial electron wave.”
This argument applies equally well to any statistical
ensemble of initial states B that represents an in-
coherent mixture of energy eigenstates, and to a sum
of transitions to many final states each of which is an
energy eigenstate.

The physical interpretation of the result of the energy
argument is also simple. Constructive interference
between different plane-wave components of the mod-
ulated electron wave function is observable only in an
experiment that cannot decide which component pro-
duced the final state. If the final state has definite
energy, then energy conservation can be used to iso-
late the component that initiated the transition. Con-
sequently, there can be no interference and no en-
hancement. ®

The possibility of cooperative radiation by a few
electrons does not substantially change these con-
clusions. Consider a system that consists initially
of two electrons plus the black box. Then

lef’=th Cix ?;(1) 9,(2), 21
jz’%lcjklz=1’ ! @7
A,(M,B— F; t):jZic,,,Aa (j,k, B— F; 1), 4"
w, (mod.)s;ZJ;W2 G, ), (67)
W, (mod) / W, (plane) < N,. (7)

The consequences of the superposition principle re-
main completely unchanged except that now the en-
hancement factor for the modulated electrons is
limited by the number N, of two-electron plane-wave
components in the modulated two-electron wave
function (2').

The consequences of invoking conservation of energy
also appear in the two-electron problem. If the ini-
tial state of the black box and the final state of the
whole system are energy eigenstates, then the two-
electron amplitudes A, (j,2, B— F;t) vanish except
for pairs j, 2 which conserve energy. For each j,
no more than one value of 2 contributes to the sums
in (4’) and (6’). If the two-electron wave functions
are uncorrelated in the sense that ¢, is a product
d,d,, then N, =N?, but the requirement of energy
conservation reduces the limit in (7’) from N? to
unity and there can be no enhancement. If the two-
electron wave function is correlated in such a way
that all terms in (2’) have the same energy, then
N, =N and the conservation of energy imposes no
further restriction.

Equations (7) and (7’) establish the following two
theorems:

Theovem 1: Modulated electrons can produce a
final state with an enhanced probability that is
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reater by a large factor R than the probability of
?roduction by unmodulated electrons only if the wave
function of the modulated state contains at least R
approximately equally weighted plane-wave compo-
nents.

This theorem applies equally to emission from one
or from many electrons, but in the latter case R
is the number of plane-wave components in the
many-particle wave funection.

Theovem 2: Enhancement of the production of a
given final state by modulation of the electron wave
function is impossible unless at least one of two
conditions is met: Either the final state must be
defined by a measurement that does not commute
with the energy, or the initial multicomponent wave
function must have definite energy.

The definite energy condition is impossible for a
modulated initial state of a single electron. It could
be met, for instance, by a correlated many-particle
state. Such a state could satisfy the requirement of
theorem 1 even if the individual electron wave func-
tions had only two components.® It could also be met
by a correlated state of two (or a few) electrons,
each having many plane-wave components, resemb-
ling the Cooper pair state.

Theorem 2 has one mathematical exception which
appears not to be physically important: The black
box, which represents the initial state of the experi-
mental apparatus, could be in a coherent state of in-
definite energy.

We conclude that there are only two possible classes
of theoretical explanations of the Schwarz-Hora ex-
periment. Either the modulated electrons have a
wave function with many side bands and the emitted
light is coherent, or the light is emitted collectively
by many electrons, from a state whose many-parti-
cle wave functions have definite energy but many
plane-wave components. It appears that none of the
one-electron or few-electron theories which have so
far been advanced?®-? incorporates either of the nec-

essary features. The many-electron theory of Favro,
Fradkin, and Kuo? does satisfy our conditions. 1®
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