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ABSTRACT 

Using I$~ theory as a model, the analytic structure of the six- 

point function is investigated in the kinematical region appropriate to 

inclusive reactions. With some idea about the analyticity, a finite- 

energy sum rule is derived. This sum rule can be used to study the 

concept of generalized duality. The most striking feature of the sum 

rule is a possibility that the “triple-Regge vertex function” can be 

calculated by the data on the inclusive reaction with relatively low M2, 

i. e., the resonance production region. 
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I. INTRODUCTION 

It has been conjectured that the cross section for 

a + b + c + anything (1) 

is related to the absorptive part of a scattering amplitude for 

a+b+c+a+b+c (2) 

when later is analytically continued to the proper kinematical region. 
1 

Then various asymptotic behaviors of (1) can be obtained from that 

of (2). It is assumed that the asymptotic behaviors of (2) can be 

obtained by the 0 (2, 1) expansion. 2 Subsequently, it has been 

varified in the context of field theory that the amplitude for the reaction 

(Z), when continued analytically, indeed has the absorptive part which is 

proportional to the cross section for the reaction (1). 
3 

We see the anology between the four-point function and the six-point 

function developing. The inclusive cross section and the six-point function 

satisfy a relationship similar to that between the total cross section 

and the four-point function. The0 (2.1) expansion in the six-point 

function corresponds to the Regge expansion in the four-point function. 

We therefore see that machinery developed for the four-point function 

(Forward-dispersion relations, Finite-energy sum rules, etc. ) may be 

perhaps applicable to the six-point function. What follows is the first 

attempt along this line. 

In order to start the program, we must first get some idea about 

the analyticity. NO doubt the problem of analyticity and crossing for 
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the six-point function will be complicated. At present we can gain 

insight only by investigating a reliable model. For this purpose, we 

will use m3 theory as our guide. 

The kinematical variables for our problem are 

s = c pk. + p @,I” F ‘% q).b2 
t ‘:. ( p ..- ‘b ) z lj; Ed 

rq; -7 (fk * ‘ic -*iz. 7” z y* 

where the momenta are defined by Fig. i. 

The result of our analysis indicates that the analyticity on the M2 

plane for fixed t 5 0 and large s and s /M2 is directly related to the 

analyticity in the mass variable of an ordinary Regge residue function. 

Given the possibility that there might be some complex branch point on the 

MC plane in addition to the singularity obtained from unitarity, we 

must be cautious in applying analytic-function theory to the scattering 

amplitude. We will, however, assume, for now, that such complex 

branch points are absent. This assumed analyticity, together with 

ideas about triple-Regge dominance,yields a sum rule which corresponds 

to the finite-energy sum rule for the four-point function. 

In Sec. II. we discuss the optical theorem for the six-point function. 

In Sec. III we consider possibilities for complex cuts and state a theorem 

on the analyticity of the relevant Feynman diagram. In Sec. IV. we 



-4- THY - 25 

prove the theorem. This section can be skipped without loss of 

continuity. In Sec. V we derive a finite-energy sum rule. In Sec. VI 

we present sum rules which require additional assumption about fixed 

poles, etc. 

II. GENERALIZED OPTICAL THEOREM 

The cross section for reaction (1) can be written as 

,A’-::. = fi>-sZ 
J i ,,,I {. i,‘, 

-.-?- /i+&,t,c~) 
(Z&‘. I: 

,A(:.,!,: I,!’ z ;,<, 
,.., ,- 

... r d”r (-‘. Y tcl iz c 
;,‘+p’- a,’ J 

( rI$L~: \ ,, !‘,: ’ .- i .\tg +y ; I:, 1 ‘;(I;,; 

where 4,(x) is the field operator for the particle c. Let T be the 

amplitude for the process shown in Fig. 2. 

J-7 I,,,, 
‘/’ .?V.’ 

;LL; ,i”w cl.““ii(““~‘):::i,‘~li’j (I;% $ ‘f :“j 1 ti:l; 1~1 <f,<< .‘) j ; 1, ; ‘- > 

A,, !.’ .J 

,‘_ .$,/j 
(31 

T is a function of 25 Lorentz scalars that can be constructed out of the 

six four vectors and thus it has singularities for 25 different channels. 4 
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It has been shown that in the forward limit when s and t are fixed, s> s-channel 

threshold, t < 0, the absorptive part of T in M2 is proportional 

to A. We would like to sketch the reasoning behind above statement. 

Let us first define what we mean by the forward limit. Since the limit 

is used to relate the cross section to the absorptive part of T, all the 

four vectors must approach a real limit. That is lim pi= lim p I= real 

four vector, lim q = lim q’= real four vector. But it is important to 

keep in mind that the direction and the rate at which these four vectors 

approach the limit is not specified. For example, in the special frame 

in which p a= 0, we can have 

In the forward limit, all E’S approach zero. But it is our choice as 

to how they go to zero. For what follows, we make the distinction 

between primed and unprimed variables only if it is important to keep 

track of is Is. In the forward limit when s and t are fixed and s > 

s-channel threshold, t < 0, only those variables that are linearly 

related to pb* q, p b* q’ , or ~6. q can vary. They are 
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b\’ &.+ ;.;~, 0);; 

P1,‘~ :: i. I:,., 1 ,.: . . j .: _ 2 t -I~ J..,,, ; c f.~f 

!.I,; :: ‘p,., \, i. .Cl’\2 _ cz .!. &‘,+ <>,\,‘~...,, ;:,‘J 

M,: : :; ,.. p; * pt.. ‘I JZ. f i:. TN’.+. i. I-“‘.. !J _. I:‘- 2t ‘+ b\ -A. 

‘x’,, ;: I; ,“\, _.,:; ‘; :’ (?’ z 3, 5, ) - + ( ‘- ./. p, ; L :: -~ j 
1. 

;l+ :i ( F,; .., :;“ L :, !’ .i;‘~ ,.,, .f ‘Z 2,1’1’ A, ,rl. 1 ,si ‘, 

:-7 = 
(; i; i, :,‘:i 

,*. i L, 
:-” 4. ,LI’- -I’ I\,,>” & .i 

& = ;- 1,;; +$ = s + f’ 1. , ‘ .:,. ‘: 

2 2 where we have set p a = p 2 
b 

=m. These channels are shown in Fig. 3. 

The absorptive part in M2, when s=s 
0 

+ ie 
1’ s’= s 

0 
+ ic 2, t real is 

2i t’~,;;. ail r’ -‘ye ( :: ,.i,, ,a i, ( i :y :I t;<~ * ;c2. .+ / I;;,>” ;,I: ., ;2 j / 

1,” p L 2 i, + 1:. ,,) k ._, I,, ; __ ,; f; ; pi \ 1, T :. ‘~ :.” i.j ‘. .. b : : ! , 1 :” ; :. .( ‘,: I 

&I.,: :‘, 6 ,,Q ,. 2 y., -2;: _ 2 ‘I i kli;: ~: ,(-; ;-<: ,, , C&‘j 

XJ = s,, -t f? -t TL I:;; .* ; ( Gz- El) >-‘.:: ::;a pt .j. -+ .I(.f,,- tf > ‘: -, 

;i“,. -’ L;; ~+ h.l~“~i-,qJ... -y ~4.‘:-Q(,::; i::, f -s,& \,,;;.* ,:;;,., p-t+ $.z-f$ 

- T(S:. $,+ it:, , s’z’j,!;’ ;(I ,, /i,l.” ! I ,- - t. ,,, ) 

N,‘:, ;,:; ~ ::/,,. -,,, (I A.‘<., ) bj,‘L :, c ‘i;+ i’,p I’>. T ,; ,:c .‘i.,; ‘A c: !“) 

P.1; : 6 I::, L. .I, ;J’. - s:‘, _ 2 ; ,i L,&:, A* l-c:, -.: I-‘ii”l 

y,?: :.: ‘-is’. 4 1-v: c 1 ,,:,,,r,.,, 7’ ,: j : :.:,,, ., /I”’ 1 ‘: (:y 2 !: \ 3. > 

T+ :. -5,> 4. /.,I,:)4 2 qn’.;)k’~ . $~ in (-kl-C ?J,, ;Ys z .-,s’,; .I E,,!j4 ,;Jli;’ ‘, ii”. t, 4 i (&.&i 

(5-l ’ 
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Notethatifwechoose E~,E~,E~ suchthat IeiI>Ie3l, (c21>(e31 

only the discontinuity in M2 and M 2 1 contributes to the difference, All 

other channel variables are evaluated in the same side of their respective 

cuts. (That is, small imaginary part for all variablee,except M2and Mf does 

not change sign between two terms on the right-hand side of Eq. 5, the unitarity 

equation. In other words T has singularities corresponding to each channel 

associated with variables listed in footnote 4, but it is possible to 

isolate a sheet on the M 
2 

plane which contains only the singularities 

due to the M2 and Mt channels. From now on “M2 plane” refers to 

this sheet. The absorptive part of T in M2 can be evaluated from 

Eq. 3. 

+I,',,: .-[ (, ; _- :+A ,; i:,) .<'ai;,,b ,:~: .' I 
- l.4; 

.\ I.~"' ') 

T r .i,t’;.; 
E,. i: h 

si: _i~ 1’ 
L. ;;, ^, 

(‘y- /,: j (2J 

“!j 

d 
il .: ~,‘“( p: j), -<I _ p, ) ( p 1:;” / :~;(.,~, (,I? .:;i. I 4; ir:) j i’,, /J,j’,:’ > 

i i:“( p<\,- ki,.. “y+) ,q i/y ( {,J{<,) \+,)<‘il j j,:. <-‘I i ;’ I i;b,“‘, ] 
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Note that the first term on the right hand side is non-zero only if 

‘a+‘b 
- q = p 

n 
and the second term is non zero only if pa-fib -q = p,. 

These two regions do not overlap. Consider the region where 

Pa + Pb - q = P,. We want to show that 

,A 
(6) 

where 

A =, .( ,.,,., ‘5 
1”+ /&: y’ 

..i’~::.!ili!, 
kv ~ i- 

Of course the distinction between Abs T and A are “in” and “out” states. 

Let us define an. analytic function F(s, M2, t) such that 

j& 
E, rc.3 -3 5 

F,(s,+,t, , ML+X3 ,-t) = ~~~ :p&,‘I-‘y/ +;:cG )+I) 

Then Eq. 6 is proven if we can show that 

~lc”“’ 4 
E ( So-AG, ) bi-ic,, it) = ,+I $L- i *? / +(:,, j I,,- I’c,,r’:,;‘. :7 ‘, 

G,;C33’ 

since the continuation of T from s’ = s + ief to s’ = 
0 s -ie 

0 1 
is given 

by the continuation of Fn from s’ = so+ ief to s’= so - ief. Let t <O be 

below the t-channel threshold. By reducing b we obtain 
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5,:' i:_r _-.. 
I ,c,-( 

.,I 1,; ;,;y+ j &) j,,.~::, = .L;,, ;: ( s,, c & ( ) 1.1: -+ 16: ) t ) 
cY:,+o 

= ,L Lis, 
c,-ro /,; -h v,;; i E i 

Js( ,s; c&.7-,,,! 1 ) ,y 
3’) a 

I < /s, 1 ‘tb ( x”, 6) --.! . . ._ .,,...- --. : ‘- 
~~ P,“-~-;E Tc (0) im i 

+ < F$,,, 1 f ::,i, i ,_,, ~ I __.-_. ..~~ p,’ r:t,~.” i, 1;; p,, i,, ii j ;: : j “. I:. 

where we have performed the x 
0 integration by using a integral 

representation for the theta function. If we evaluate Eq. 8 in the rest 

frame of a, s = 2(m2+mE + irneb + iEeb), the 

continuation to the opposite side of the cut in s is equivalent to continu- 

ing p” to the other side of its cut. On the other side of the cut in p 0 
b b’ 

the sign of ie changes 

p (s-,.ic 1) P,,j”A,< k3>t: ) = 

.i T-. i 
.,” ‘, 

a )~;; 2.e)l’i “:r~’ ~ d -*’ .,, ; I;..:,: F (/q., i/)i^ ~’ h 
I- !. ‘C’ (_ j .I’, (;;>,:j ___.___ L i 

,:,:,,, !,,,?- t-~/“,l ( T, j. :,‘; I I- 1 

i ,,* I; ;:,, :/., (T>‘j --_._ . . ..I. t;“, r,p .” H +;; $! Z(Jl \ j “‘I Ji 
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If b is reduced in 
EaEb 

J 
m m <n j $(O) I PaPbin >, it is ~quite easily seen that 

a b 
indeed Eq. 7 holds. 

We stress again the most important point that there is a sheet in 

M2 plane which contains only the M2 and &It channel singularities. 

If the singularities from the other channels can not be separated, 

there is no simple relation between the cross section for the inclusive 

reaction and the absorptive part of the six-point function. Let us take 

a particular example a = in-, b = proton, and c = K-. The process which 

gives the right hand cut, shown in Fig. 3a , is non zero when 

p1” ;F, ( /t’ ~ .I. ,)i) ) ‘? 

(For 

the left hand cut see below). The break in the cut is due to the require- 

ment that q2 = 
2 

‘K 
The cut in the region (pK + mp)’ 5 M2 5 (&?pK) 2 

corresponds to the emission of K as it can easily be varified that 

q. 2 PK The cut in the re:;ion M2 ? (m+ r,)’ corresponds to the 

three-particle scattering process since q. C -pK, provided s and s’ 

are analytically continued to the proper side of the cut. 

The second term in Eq. 7 is shown in Fig. 3b. We are interested 

in the case where s and s’are held fixed and large. In particular (pa-q)‘= t < 0, 

(pa - p;, )2” -s<o, (q+ p,)2 = S+P 2- M2 + t. Then this diagram 

corresponds to the cross section for the inclusive process K-+ p -P TT-+ 

anything and the scattering process K-+ ri++ p - anything. 
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The incident energy for these two reactions are (p, f q’) = s + p2 - M2 + t 

and M2 respectively. The momentum transfer between 71 and K is t. 

The cut on the M2 plane corresponding to this process is located 

at the position 

4! 
L 

.z 2 i ~4, 2 i’i,~ _ i’.4,; ,& ;; “‘z + j”$ p i p, 2 : ,.$: ” 

This cut corresponds to the left l-and cut shown in Fig. 4. 

III. COMPLEX CUTS? 

So far we have been discussing the singularities whose existence 

is guaranteed by unitarity. Are there any other singularities? It is 

our task to investigate the additional singularity structure of the 

amplitude T, besides the cuts shown in Fig. 4, in the region 

2 2 
1 M / 5 (&? - pTI) We do not have to look far to find such singularities. 

In fact a box diagram shown in Fig. 5 will give a complex branch point 

on the physical sheet in the region I,s/M’ 1 = O(1)5. Another region of 

2 
interest is where 1 s/M />> 1. In this region such a trivial example 

cannot be found. Therefore,restricting oneself to region 1 s/M2 1 >> 1, 

we will now investigate the singularity structure implied by certain 

class of Fynman diagrams in the $3 theory. We will notice some very 

important simplifications. 

In the region j s/M2 / >> 1, we expect that the dominating process 

in the inclusive reaction is the Regge exchange shown in Fig. 6 In 
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In particular in the case of ~+p- in+ + X at M2 
2 

=m 
P’ 

Fig. 6 represents 

an elastic rr+p + n+p process which is dominated by the Pomeron 

‘7. 
exhhange. Experimentally in the reaction p + p - p + X, It is seen 

that I = 112 baryon resonances are produced and the cross section is 

constant in energy. Furthermore, the As3 resonance production cross 

section goes down rapidly with energy. This indicates that in the 

reaction pp- p + X, Pomeron exchange gives the cross section which 

is constant in s and the lower lying trajectories for p gives the 

contribution which decrease in s. In fact these experiments tell us 

that Fig. 6 is the dominant contribution. We use this experimental 

result to say that in the limit of large / s/M2 1 , only certain class of 

diagrams is important in the I#J~ theory. Consider the diagram shown 

in Fig. 7. 

(i) The four point function associated with the lower black blob 

corresponds to the arbitrary sum of diagrams in the I#I~ theory such 

that it behaves as [-(p,+ k)‘J a(t) P(k:, (k + p2 -q)‘, t) in the limit of 

large (p, + k)‘, Similarly for the upper black blob. Furthermore, 

we assume that the asymptotic behavior of p(mi, mz, t) on the complex 

2 2 
ml, m2 plane is such that a double dispersion relation can be written. 

The ladder diagrams satisfy these criteria. 

(ii) The checked blob is a six-point function which represents 

arbitrary Feynman diagrams with n number of propergators and 
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1 number of loops. 

From the experimental evidence presented above, in the limit of 

large s/M2 the set of diagrams belonging to Fig. 7 gives the dominat- 

ing contribution to the amplitude. We therefore restrict ourselves to 

these diagrams. A crucial question is whether the class of diagrams 

contained in Fig. 7 possesses singularities other than those required 

by analyticity. To answer this, we will prove a following theorem in 

the next section. 

Theorem: In the limit of large s, the necessary condition for 

the diagram (Fig. 7 satisfying (i) and (ii) above) to possess complex 

branch points on the physical M2 plane is that p (mz, mz, t) possesses 

complex branch point on the rnt, or rn: plane or a branch point at 

2 2 2 
ml orm2C po. 

If Pimf, mz, t) possesses only a cut on the real axis at p,” < m:, rnz, 

the analyticity of the diagram Fig. 7 can be deduced from that of Fig. 8 

and only the cut due to the unitarity shown in Fig. 3 is present in the 

amplitude T. This theorem reduces the study of the six-point function 

analyticity to that of four-point Regge-residue function in this particular 

kinematical limit. For example , if we sum over only the leading 

logarithmus in the ladder diagram, p(m:, mz, t) = constant. Thus to 

this order, Fig. 7 contains cuts only on the real axis corresponding to 

the unitarity cut shown in Fig. 4. We feel however uneasy to restrict 

ourselves to the leading log since the nonleading log is also important 
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in obtaining the asymptotic behavior of the residue function 
7 

pi.;,!.:, r, ,,,, ;. j ./ ) -..a y&i,“)~” ii’) 

,+‘; * + s,: (9) 

Incidentally, the asymptotic Eq. 9 does not give any complex cut 

2 
on the mi plane. 

IV THEOREM 

This section contains a proof of the theorem. A reader who is 

not interested in the detail may skip this section without loosing 

continuity. The Feynman amplitude of Fig. 7 with P loops and 

n propagators in the checked blob may be written as 

F :,,,,:, \l f ,,&,; f;r!; >,c hi.‘, i;:“‘i ,{ ) i!‘:~:;(k,-:‘-‘-~rj!r:.~‘,j ‘:++Qj $k’;.b 11.:\;y 
..~ 

‘.’ ir i ,i i’ ,: j I/ : FY\ A. j: *..f *I ‘; I,~:: ” / ,; ) ( kL; -p.‘:, )( I:\;’ ., ,“I”.) (( IT, $ :,;;\; I,., j1.i 1 ;;;- ( :,; j.. j-;,i,) 
Y: ‘, 

where we have labeled the momenta flowing through the loops by ki, 

momenta associated with the internal lines qr and the mass of the internal 

particles was taken to be p o. 829 By the asymptotic behavior assumed 

above (i), we can write an integral representation 
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(I..‘.,r,-‘)i::1::,~r:;~j:~,1:) I _&$!.r:i.!:: !5! ...,. ,.: .i;,,: ,.q.l,” c (k,z- p; j (( I:,-’ p*,ci>)“- ,~‘I’I 

,3 c pf , p::f.:;~?~~p-‘.i,~ ,~ .,_..,_,.. i p’; 
( 

;‘~ 
J 

-+ t ____~~_. 
( t:,:~ .i $$>( j++pl+ :;iq) 

\ -~.!x..?y ~?? ..-;;.- ~“.;\ “p 
’ L. ci c Cd i 

:__, i”fj tr,c:, -t p* x) - p/ 

2 
Where the path of integration pi, ti2 may be complex depending on the 

singularity structure of P(m;, rni, t). Finite number of subtraction 

constants will not affect our argument below. Using the representation 

(- sy ’ i ~y::,i::.~ _.,.,._, .:ld (11) .: (6, .\. l-l d ‘Ti’- \ --; _ ,?,~\Z, t 1 i’r 

which is valid for (I < 0, we can rewrite Eq. $0. 

where 
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i‘ a 

” (6) ! i’ i$i$ jfJfj 
ii+6 

1; c I - .z xj ) * 
3-1 )‘I 

c 
Lit-6 . . ..-lf - & 

+ (,k,q ::,, p;‘: ” _ g, + 2 (&yy~) xv ; 
r: 7 

G is an integral involved in a diagram shown in Fig. 9. 10 
When the 

loop integration is performed in Eq. 15, we obtain 

4 ‘x 1,’ ;;‘izJs 4 ‘;< \ ’ ;r’(; j 
Q& :, vlcq-2; 

‘, j.,l, 
RLT yl)~c 

c n + , E c, -j >.$ i L . 2 .& 
i 

,, .kW J 

where C is a function of x 1s only and 12 
“1 .lLI . L I” u lU“LCl”ll “I ‘x MU ““‘J at,u 

C/6) 

c a, 
) r: 1 f&x,,, '-l,XllcLj 'tMt 4-f fj(x,j' , k,,,;; :yj 

k-1 i:: I 

h+ b 
-p+ L L yy id,‘.+ 

‘,‘. !, I 
m,‘.r, * ij:12i2 j- I, 2 r’, , , ( :~ J I”<i ,V$~ + ,q .t:;; . /4’9Z x:, ,,j c 

x are all possible invariants that can be constructed out of six four 
.l 
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They are given in footnote 4. -2 
vectors. mk are external masses. 

With Eq. 16, rnf, rni integration in Eq. 13 can be performed explicitly. 

Note that inorder to perform this integration, it is necessary to keep 

2 
(Y < 0, D’ = D+m: x, + m2 x2 # 0. Such a region exists (e.g., where 

-2 
mk = 0, X,ZO) 

J 
and analytical continuation to their physical values can 

be performed after the integration. The result is 

F L‘i -,_, _. _,.. I ,Jy:p t ,/Q yp;/, ; r,q) 

where 

I = p-Zn,;s 
.e 

Jj 

‘y& Y. ! 

j:l J 

Cnt2-,r,i-i 3( y 

_-__~.,. 
j f..' ., ..: :: " 

;,,.d. ; ~;~~~~,y~~~~~;-.,,-I' _.,,,,,,;, ~. 

\ / ..J 

D' 5: D t m,z xi A nr ; :yL 
04) 
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In the forward limit and large s, we have 

s ' 
I 

+-5 = -s.& = -s,, , t=- t' ) 2:', s ,,r:', .=: x3, ,Z~ L"9 

Writing D ’ explicitly 

D’LZ (.g * q4 +.f#, +!‘I, + p& + j,‘,A, fll ~p,,,~~ 

,/ .,., 
f c-f,+ fi, + f;, * -F,“] pa + f, ( p,7‘.$+ -I, i &‘-,-i, 1% 

1 

+ (f,& fLi ; [- i .+ 2 ;.>ii.:*~ 1;: 1 1 j t- j,@ f) * $, (r:,‘*:;,j” 

+ if,; - . .zJ 5 + (i:<, 

“S, E 

,~ -ix, )s% (f,, * f,, jc 
(2.3 > 

~ 2 jiq ‘T- + +a5 t$ 6 .& /4; f f,, bl:‘ 

11, G 

The equality among the invariants in the forward limit is true only 

for the real part. At this stage it will be seen below that it is important 

to distinguish s and s’. We can simplify Eq. 23 by relation Eq. 4, 

the result is 



-19- 

u’ = 7 t In’*, ’ 2 5 4~ Ii + + 2 .A ‘1. )~ j ‘~ 3 r( 4 1 i /, ‘;\ ;-~ t-j, 

h +-L, 
- ( $&, “ql~ t py3 +. y& t p; XS~ + pz %<? i c 

THY - 25 

where 

2, .: ( f; .+ f, -f, _ is + fz* ‘. & ,., .$, + f,,) 

tit j = (- :;;, 4 
3:. ::: C-f, + -..(> -t{,.7 - ‘;,, i, j,* .-.{:5 ‘) 

,r^?, .z (- i‘,- f’, .- f,; 4 i,: .i -,fs - .f<$ %+ -4,: i ;?I!;, ., .‘.(,.<) 
C{ ;; < ‘: ( -q:, + .f ,, c f3 + c, i 4: t .+; ) 
,:j b :: ( ; _* ~(1; -i :i, * T* + 2 4, * 2 (- 4 2 .i‘(, + 2 4, 2 -i i -4 ,.i’[, 7 ,I ,’ 

-t ii, + J,, i ;.i:,, + E & ) 
Eq. 18 with D’function given by Eq. 24 is a g&era1 form of the amplitude. 

We are interested in a particular kinematical region, namely large 

sands’, ands is evaluated on upper side of the cut in s, s is evaluated 

on the lower side of the cut in s’, and ts 0. We can not simply take 

the large s limit of Eq. 18 along the real axis since the integral 

rgpresentation Eq. 18 is not defined there. In order to get around this 

point, we define function h2 and h3 

j&). ,, )i,,*(,) L’ x, i,, i&, ” > .Y:,?& I 

jipi~ , ,fwi,‘\ = xs W4,&> j )it!to ) 
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(We note that f. 0: x 
J 

1 for j = 1, 3,4,6,8,9,10, 11, 12,13,16,21, 24, 25 

and f. ZX 2 for j = 1,3, 5,6, 7,9,10, 12,14, 15,17,20,24, 25. These 
J 

follow since we must cut the line associated with x 1 or x 2 to form 

the invariants x j listed in the footnote 4. ) We divide the integration 

region of Eq. 16 into four parts by inserting 

[ &Cth,i +. &&“J’;&) + O&h31 1 = 1. 

into the Eq. 16. Later we will be looking for a term proportional 

to s 
2ff which comes from outside the region where hi, h2 >> 1 :I . 

Therefore, we can write I as sum of four integrals. (If the integration 

region where h 
2 or h3r; 0 is important, then it requires extra care.) 

Calling If, . , I4 terms with 0 (h2) 0 (h3), 0 (h2) @(-h3),0 (-h2) 0 (h3), 

and 8(-h2) 0 (-h3) respectively. We.seethat I1 has cuts when s, s’ > 0, 

I2 has cuts when s > 0, s’<O, I3 and I4 have cuts when s < 0, s > 0 and 

s< 0, s’< 0, respectively. Therefore large s, s’ limit can be taken 

in the direction where it is regular in s and s ‘, that is S, s ’ + -m for 

II’ 
s+-m, s ‘-tm for I 2’ etc. We will demonstrate the technique for Ii. 

The technique can be applied for 12, . . , I4 also, Writing 

r _ -at,.? 
1~ , - u- 

, ht6 llrb I 2$-l& 
Qq-1) y 

.,,r--! d .I 1 

i 

&l,x,) @ (, bj _-j &j! {j .:i ,: li,. 
j. I -4.il:!...- ,. ,~~ .~, .,.._ -,,,’ “‘_ ,_,. ,.,,,... ,,.~ ....,,, ..,~I,‘~~,~.,.,-,‘.‘. ‘,--. ..,.. 

J :> 
D 

)I. ;.; + .+:- 2.:< 

<J (2) 
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We take the large s, s ’ limit of Eq. 26. Note, however, that Eq. 26 

converges only for cy CO. Therefore, what we must do is to single 

out the region of integration where Ii behaves like sl’s .Q and 

analytically continue to n<O after doing the integration explicitly. 

Note that for QXO, such a term is not the leading term. Furthermore, 

when s, s ‘+ m, the integral representation ceases to be valid since 

I1 will diverge when s, s ’ reaches the threshold value for their 

respective channels. When all other invariants are kept below 

threshold, in particular negative, integral is well defined when 

s, s ’ - m . Ii is well defined on the upper half s and s ’ planes as 

well as on the negative real axis, and therefore using Schwartz 

reflection principle, it is analytic on the physical sheet of s and s’ 

plane except for the cut on the real positive axis. Therefore, we can 

continue s, s’+-mlimittoobtains+m+ieands’+m-ie. 

(Assumption about the real integration range for IJ.~, . p4 is important 

-a-l here. ) Note the presence of x1 -u-l , x2 in the numerator of Eq. 26. 

When s and s ’ are large, the integration region xi- 1 i/s / , x2- / l/s’ 1 

gives the dominant contribution proportional to sOszcy. When 

hl or h2- 1 I/s 1, the contribution proportional to S@S (y does not arise. 

Therefore, we can restrict ourselves to the region hi, h2 >> [ i/s ( . 

This justifies the splitting of I into Ii, . . . , 14. First we fix s ‘~~0 and 

take s--m. Setting y = xlshl/R, * 
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1, ,+&-+ 
D, -of-l -tie, 

x2 ,_,__-_,,._ ,.~ .,,. .~ ..,.,,.,.... ..., ,~ ,,.,. “,,_ ,,,.,.,,,, -, ,,...,,,.,.I.- 
0 P% 

i~-~p++-y c,+r,l~~-2ci4-LW 

where R = D - sg2. In taking the larger s limit, the x 1 appearing in 

R as well as in the s function and c can be set to zero. i. e. , f. , 
J 

j = 1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 21, 24, 25 drops out of the 

problem. In particular, we note that f f f 
4’ 8’ 24’ f25 

corresponding to 

M2, 
M3 x4, x8 drop out. So Eq. 27, for large s, does not contain 

singularities from channels shown in Fig. 3c, d, e, h. (Later we will 

see that when large s’ limit is taken, the limiting expression does not 

contain the singularities from channels shown in Fig. 3f, g and contains 

only those in Fig. 3a, b. ) Note that the path of integration depends on 

what we take for the phase of shi/ R. The singuls. rity of the integrand 

at y = -1 never makes the integral diverge. In fact we take the path 

of integration shown in Fig. 10. Since the value of integral is zero 

everywhere except along the positive real axis, 
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-& 2 ilS ,+y p(-~)j-~[7).~,(+&d) 
cd- I 

c *‘-2~p-2ix “&A,) ,$i’j,, ‘) (&yy;- __.._,.. _.~._~.,. ..,,,. ,,~~.~ ,.., __._I i 
,;y& 

r(7) ..,;‘,I.4 -c ‘, 2 a! ) 4 j:L ' -'.~'-'."'~,C~~.:)..RI.~:~~,-:;-'i '. 

i'p;, -* 
(2s j 

I‘ . 

The large s’ limit can be taken in the same way. Continuing to the 

region a > 0, and continuing s and s’ from the negative axis to so+ ic 

and so-ie respectively along the positive real axis, we have 

,) ; ; f :L y i:i 
I, : ;:; 

/‘(?I .21;’ + ‘,2 .-~d ) 
@;j ‘\ 

where 

a&i r i’ ij ; ” ;:ij: ) +/,j :: c (.(, * & ,; t. 

+ [ l i x, ,. .?;, ‘* .L~ -4” 2 .f2.? ) :5? .7 .::;I 

I? t:, 
- ( “Si- ~,/1<+ p”yy c f,(,-ii+! +I”; Yi -’ j.f;Y6 ) c 

All invariants which were multiplied by x1 and x2 were eliminated. 

Finally, 
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where the subscript 1 corresponds to the contribution of I1 to F. 

Assuming that pi integrations are on the real axis p; > ~0” 12, we can 

deduce the analyticity of F on the M2 plane from Eqs. 30 and 31. 

Note that K is exactly the denominator function for the four point 

function when two of the external particle has mass t. Since the region 

x1 - i/s, x 
2 

- i/s’ gives the contribution, it can be represented by 

Fig. 11. The four-point function to arbitrary order in the 

coupling constant has been discussed in many placed. 12.13 
The only 

possible additional complication in our problem is that two of the masses 

are t < 0, and that some of the internal masses p 
1’“” p4 are integrated 

from p,” to m. But we note that Ref. 13 shows that the propagator is 

negative definite below threshold when all the external particles are on 

their mass shell. The continuation from their mass shell to t < 0 will 

make the denominator more negative. Same is true for any pF> ~0”. 

Since the integral over l~f are convergent, we see that F is analytic on 

the upper half M2 plane as well as M2 < 4~: on the real axis. Then the 

Schwartz reflection principle can be used to see that F is analytic 

everywhere on the physical sheet M 
2 2 

>, 4p. on the real axis. Note that 
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these arguments will be false if p;is complex, that is if the residue 

function P(mz, rnt, t) has a singularity on the complex mi, rnt plane. 

IV. SUM RULE 

The theorem states that if there is any complex branch point, the 

source of such a branch point is in the Regge residue function of the 

ordinary two-to-two scattering amplitude. We are not prepared,here, to 

make any statement about the Regge-residue function. We would rather 

take the point of view that if the results of assuming no complex branch 

point on the M2 plane does not agree with experiment then we know a 

possible source of the problem. 

In this section, we assume that no other branch point except those 

coming from unitarity exists. The singularity structure for I, is shown 

in Fig. 12. (For those who skipped Section IV, I, is the part of T which 

contains all the leading singularities in the limit of large s.) The 

discontinuity across the cut, according to Eq. 6 is proportional to the 

inclusive cross section. Therefore, if we know the M2 dependence of 

the amplitude around the circle of radius M,“, we can use the formula 

*‘~,., a \.- ) 



-26- THY - 25 

to obtain the relationship between experimentally measurable quantities. 
14 

The triple Regge expansion supplies the M2 dependance around the 

circular contour. According to the triple Regge expansion we have 

-r - 4:;,>i +- 
_--...-I 

. ,,I 

r { ‘j .g (&)T ‘,+ ! * “K”;~;;f.)i~“i~r~~ ,p ;jl! is 1~;‘: i: ;‘,;: \ 

pi -+ I-r? “CL ” 

s+<; 3 

,,& 7r ( CXiiOk tx,crr --y$ii) 
i 

., 

+ L F;,,,‘i:,, : 
.r “’ j 

(33 1 

where 

,‘ :: 
-;rrtiiji+, 

2: I fj I pp ..:y--+ .,., ..,... ) 3 = e-” 
, ,T ( de !: i~l,J -, d.;,‘< ‘1 - d,JiJ 

-+ ) 1 

pabj (t) is a Regge-residue function associated with particle a, b and 

Regge trajectory j coupling, g.. 
1Jk 

(t) is the triple-Regge residue function. 

They are normalized in the same way as Ref. 15. These notations are 

defined by Fig. 13. In particular our g (t) where P stands for the 
PPP 

Pomeron, corresponds to g,(t) in Ref. 15. a(O) and ruj(t) are the 

Regge trajectory functions. When ai(cj(t) - I, = v = integer, the 

first term of Eq. 33 seems to have spurious poles. They are cancelled 

by either (i) zero in g.. 
1Jk 

(t) or (ii) by F. .‘. 
1Jk 

The spurious poles have been 

studied in Ref. 10 by computing a particular Feynman diagram in the 

b3 theory. It was found that for y 5 0, F..n = 0 and g.. 
uk vk 

(t) has a zero, 

for yz 1, F. ,n is present to cancel the poles. It is therefore, quite 
uk 

reasonable to assume that F..n = 0 for n CO. 
n 

For n t 1, Fijk 1s a 
1Jk 
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polynomial and even if it is present, 

and gives no contribution to Eq. 32. Using Eq. 6 and argument on the 

left hand dut presented in Sec. II, we obtain 

Ti t4: 

i 
n j O-. 

(w\ - 
41% 

’ di <J M2, > 
dML -(-\$ j "'h yJhfJ 4 i;\ L 

a+b-P ct x ‘Ih’ c+ b-;, 4 ‘,,y 

d. Ici - ‘Xc ci 1 

= r (,-c-ly) UC., [CJ J 

1 1: ‘il 5 

(hi:l~~‘;-“~““~~ii.(j~: JLjb, Cf! 
,. ,.. _^ ..__ _ .,.,, ,., ., ,,~, ,,, 

*‘K 
1 Gi*; fir> -I- SJ<,j .~ Gik[,: j-i-b14 1 

.J 

(34) 

Note that only even signatured Regge poles contribute in “i”. This is 

because the inclusive cross section is always symmetric in j and k. 

It is important to point out that for -----I .As 
d t JEW ,/ic ~C I; ..,:> ,i, ~I. /q 

The center of mass squared of b and c is 

‘(:. +&’ s .+ p- A/i2 4. t 

and it is not fixed along the integration path. When major contribution 

to the integral comes from lower end of the integral, however, modification 

due to the energy shift should be small. Note also that if a = c, Eq. 34 

reduces to a trivial equation for even n. 
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V. EXTENSIONS 16 

Eq. 34 in general requires measurements of two inclusive 

cross section a+b+ c+X and c+b + a+X. In this section we discuss 

sum rules which stem from Eq. 34 but require less experimental 

data, We see immediately that for a = c and odd n we have 

d t J W 
! 

&jq’ \. ,:, 
LI 4 t .-> ,:, + y 

6 
1 ..i ) 

K 
AL,,. i0-J j,;,, 

.,._,,..,,, ~_~I ,_,., ..,...,,._..,,.. I . . .~.--.~.-.- ..,,,... ~..-,.------. 

s:(o)- Glj!+)- Hkct) “!++-I 

where the sum ‘Ii” runs over only even signatured trajectories. 

The contribution from the cross channel c + b + a + X in Eq. 34 

comes from the fact that I contains both right and left hand cuts. 

Suppose now that we can make the separaction 
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where IR (IL) is an analytic function of s, t, and M2 which contains 

only the right (left) hand cut on the M2 plane in the limit of large s 

and fixed t. Let us further assume that they both have a triple-Regge 

behavior with appropriate phase factors. (i. e. no fixed poles) sum rule can 

be written for both IL and IR separately and we obtain 

,,, rl ,f- 

1 i f kl’ jr’ $5i;l, ‘, J (sj” 
r/rr i;, 12-E3 t’ ,,’ 

57~ “F -& y;, :y ($(“‘“i” “,“:,i ,_,.,,_. !“Ii’ “I”~[~r<~~; “+ ,,I, \ , .I, ;, !’ bi ;; ) 

*;ii c/, </ 0’) _. j; /*; > .’ I I 
I‘ 

L,et us now discuss the content of this sum rule. (a) Consider a reaction 

a+b-a+x. Then the leading Regge trajectory is i = j = k = Pomeranchuk. 

For n = 0, and small t, we can write 

,b\, j -j- 
i ‘Y-‘--‘~- ._ ‘I 

J i J, d !,I;’ ,;bT , j, ~~ (I, ., r 
dn/l’, I? -A i3*,ji,P ( !pq ii :;tr?y ft. ! ., , ( 

! i, ‘II 
,_ I,x,...” ,,...,.., ,,,, 

-It)’ ,. ( ~.. ,ji, lo) c 2 ti’t 

where (Y’ is the slope of the Pomeranchuk trajectory. 
If aP(o) = I, 

g (t) must have a zero at t = 0. The presence of this zero is well 
PPP 

known. (b) Note that the left hand side of the sum rule (37) contains 

the integral over the low missing mass region and thus it contains the 

integral over the resonances. We might, therefore, expect that the 
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concept of duality from two-to-two scattering amplitude to appear here 

in its generalized form. This will be true if the sumrule holds for 

unusually low M,” with only the leading Regge trajectory in the sum over 

i. Since the generalized form of duality is widely accepted without any 

experimental basses, this is a good opportunity to check it. There is also 

a related question concerning how the Pomeron and the ordinary Regge 

contributions should be related to the contributions from the rescmance 

and the background. If we take the analogy with the two-particle 

scattering, we associate the contribution of the background in the M2 

channel with the Pomeron contribution in i and the contribution of the 

resonance with the ordinary Regge contribution in i. All these can be 

checked when the data in various reactions become available. 

(c) For now, we associate the Pomeron contribution to the left hand 

side of Eq. 35. Then we obtain 

5- /ypp (4, = ,ba( i-tii.(“l t+ ) pi: 
_,____,.,_.,_. _ .,,.,.,,. ~~.~, ,, 

5 
d ~i,L i _~~~ ,J ! I? i\;’ i~j, ~’ ii .;i ‘!i ” X ) i 

o‘, ,r;;: I b Jl? i”_ 
+q. 

where the right side is to include only that background contribution 

which has s 
zap(t) 

behavior. This equation is useful for obtaining the 

value for the triple-Pomeron vertex function. Note that Eq. 39 is the most 

reliable way to obtain gppp (t). The only other way known at present 
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is to measure the differential cross section in the triple-Regge region. 

But the cross section is bound to be small due to the zero in g,,,(t) 

at t = 0 discussed above, and away from t = 0, the contribution from 

cuts may play a role. Another advantage of Eq. 39 is that if the back- 

ground can be properly separated from the resonance, the knowledge 

of the low energy cross section will put a lower bound on g,,,(t). 

Furthermore, note that factorization implies that the right hand 

side of Eq. 39 is a universal function of t for any a and b. A test of 

the universality can be made in, for example, 

p+p+p+x, a*+He -He+x, ~*+p + p + x, rrf + p + 7r* + x, 

K* +p +p +x, K 
* 

+p *K 
i 

+x, p +I?-p +x, p fp -p +x, etc... 

The Regge behavior for the unsignatured amplitudes IR, IL were 

assumed in order to obtain the above results. The verification of this 

assumption is, in itself, extremely interesting. We will illustrate a 

possibility that the fix pole may exist by a heuristic argument. Consider 

a Regge + particle - Regge + particle scattering where initial Regge 

trajectory has spin s and the final Regge trajectory has spin aj. The 

particle is taken to be spinless. Let the square of the direct channel 

energy be M2. Then at large M2, the maximum spin flip amplitude 
CT. - cd. - (Y 

k 
behaves as (M 

21 J 
) where cui is the Regge trajectory exchanged 

in the t channel. For example if aj = ak = 1, the kinematics is same as 

that of Compton scattering and ai is a Pomeron. In fact, at 

Ly. =cr. =cy 
1 .l k = 1, the spin flip amplitude chooses wrong-signature 
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nonsence. In the Compton scattering one needs a fixed pole at this 

point in order to prevent the Pomeron from decoupling. The 

triple-Pomeron contribution resembles this possibility. Since the 

triple Pomeron decouples at t = 0, it may be an indication that the 

fixed pole corresponding to the Pomeron in the Compton scattering is 

absent. But it is quite possible that a fixed pole associated with 

other trajectories may exist. 
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VI CONCLUSION 

The analyticity of a scattering amplitude has been proven to be 

a powerful tool in understanding two-to-two reactions. The possi- 

bility of using such a tool to three-to-three amplitude becomes 

exceedingly complicated. We have demonstrated that in the region 

[s /M2 \>>I, there is a good chance that the analyticity of the 

three-to-three amplitude on the M2 plane becomes very simple. 

Using this analyticity, we have written a sum rule Eq. 34. 

This sum rule enables us to evaluate the triple-Regge residue 

function from a low missing mass inclusive cross section data. 

Such information will be very useful for future experiments at NAL. 

The successes of the sum rules written here, when they are 

compared with experiment, will be quite significant. It means that 

we can apply the techniques used in the two particle scattering to 

the analysis of inclusive reactions. If the idea of duality in the 

generalized form is verified through these sum rules, we should 

gain confidence in the significance of dual models. In order to 

compare the sum rules with experiments, we need to separate the 

resonance and background. This is very difficult in the existing 

experimental data (for example Ref. 5). It is clear that future 

experiments should be designed such that the separation can be 

easily achieved. Furthermore, when a + b -f a + X is being 
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measured, 2 + b-f a + X or a + L + a + X should be measured 

simultaneously. 
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FIGURE CAPTIONS 

Fig. 1 Diagram for an inclusive process. 

Fig. 2 Diagram for a six-point function. 

Fig. 3 When s and t are fixed, any of these channels have 

singularities on the M2 plane. 

Fig. 4 The singularities of channels M2 and M 
2 2 

1 
on the M plane. 

The reaction in the M2 channel is 71 - p * K- + X. 

Position of the singularities are: n-+p + K-+ X 

22 1. Physical region for n-P-K-+X (mp+pK)2’ M2’(& pK ) 

2. Physical region for K+v-p-rX, (&++” M2 

3. Physical region for K-p-a-+x+, M2 =2t+2m2 -rnk 

4. Physical region for K-p+rr-+X, 

Zt+Zm-(& -~)~s M’s 2t+2m-(mZ+~71)2 

5. Physical region for K-pa++X, M2~2t+2m2-(&+~)2 

Fig. 5 The box diagram which gives complex singularity in the 

physical sheet. 

Fig. 6 The dominant diagram in the inclusive reaction at small t 

and ls/M2/>21. 

Fig. 7 The class of diagrams in b3 theory that were studied. It 

has a following property: 

(i) The four point function associated with the lower black 

blob corresponds to the arbitrary sum of diagrams in 
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the I$~ theory such that it behaves as 

r -(p,+k)’ 1 a(t)P(ki2, (k+p2-q)‘, t) in the limit of 

large (p,+k)‘. Similarly for the upper black blob. 

(ii) The checked blob is a six-point function which 

represents an arbitrary Feynman diagram with n 

number of propagators and P number of loops. 

Fig. 8 The diagram whose Feynman denominator function is same 

as that of Fig. 7 in the limit of large s 

Fig. 9 Diagram for G defined by Eq. 14. 

Fig. 10 Path of integration for Eq. 27. 

Fig. 11 The diagram which gives the sty, s ‘@ limit when s , s’ are 

large. 

Fig. 12 Analyticityof I, on M2 plane and the path of integration to 

obtain the finite-energy sum rule. 

Fig. 13 The triple Regge diagram. 
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Note added: We have examined pp + p + x (Ref. 7 

and Alaby et. al. CERN 70-16 (1970) and 71 - p -fp + x 

(CERN-IHEP collaboration). Following conc?usions were 

reached: (a) the cross sections are consistent with two 

term tripple-Regge expansion 

G PPf and G ffP are products of g, p, u, see S. D. 

Ellis and A. I. Sanda, NAL-THY-30 submitted to 

Phys. Rev. Letters; (b) the finite-energy sum rule 

for inclusive reaction Eq. (32) is indeed satisfied. 

See S. D. Ellis and A. I. Sanda NAL-THY-47. 


