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ABSTRACT 

A U(6) symmetric Regge pole model with explicit quark spin is 

applied to meson and baryon exchange in the HN system. Attention 

is focused on the general form of the polynomial residues which 

result from including the required projection operators. Detailed 

calculations are exhibited for forward charge exchange within the 

context of a dual model with fixed cuts. For the case of baryon 

exchange a Regge residue appropriate to the symmetric quark model 

spectrum is presented and studied. 
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Recent work by several authors. of whom we can refer to only 

a fewv 2) 3) , has stimulated a renewed interest in considering a 

U(6) symmetric-quark picture of hadrons. For our purposes the 

essential feature of this scheme is the utilization of explicit quark 

spin structure to generate the desired particle spectrum. This 

leads to polynomial Regge residues which exhibit many desirable 

features. Several of these features are independent of detailed 

assumptions about the particle spectrum, such as those made in 

Ref. (3), and we shall present the results of the quark spin 

calculation for meson-baryon scattering in a general form so that 

these properties can be exhibited without further assumptions. 

Then we shall discuss the results of assuming the detailed structure 

appropriate to the dual model with fixed cuts presented in Ref. (1). 

In particular we shall be concerned with P exchange in forward nN 

charge exchange and A exchange in backward ~-p scattering. 

To define the desired particle spectrum we shall assume that 

mesons are composed of a quark-antiquark pair and belong to a mass 

degenerate (6, g; L) representation of the group U(6) x U(6) x O(3), 

i. e., the usual 3,S multiplet. Similarly baryons are taken to be 

composites of three quarks and to appear in the (56, T; L) and 

(70, 1; L) representations for the case of meson-‘baryon scattering. 

We shall also assume that all couplings occur via U(6)W x O(21L 
z 

invariant vertices. 
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Once the quarks have been explicitly introduced via the usual 

external U(6) wave functions, which are given along with other 

details in the appendix, the desired quark model spectrum can be 

obtained by utilizing projection operators for the individual 

1) quarks . The structure introduced by these pm jection operators 

is the essential feature to be studied in the present work. These 

operators serve to prevent the negative parity components 

(MacDowell twins) of the spin l/2 quarks from contributing to the 

resonances. In the case of the mesons the q < propagator must 

It Ic include a factor (1 + -) (1 - m) near the pole, k2 Z M2, where M is 

the resonance mass and the appropriate indices are understood to 

be present. This will insure that only resonances which belong to 

the (6, G representation will appear and that there will be no 

contributions from (s, 6), (35, l), (1, 35) and (1, 1) which would 

5) otherwise appear . Assuming that the internal excitations of the 

6) mesons are described by the usual Veneziano amplitude , we find 

that the Reggeized meson “propagator” for the leading trajectory, 

in Sommerfeld-Watson transformation notation, has the form 

Db)(c) _ f 
(b)(d) Zrri J 

dhr(-A) sX 
A - 1 (t) 6;+(++;)CCd)Y(h,t) 

3 

- (f( b; ) z h,U 1 (1) 
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where P (t) = PO + P ‘t is the linear trajectory describing the 

internal excitations. We have presented this result in integral 

form in order to include the possibility that the functions X, Y, and 

Z have implicit in their definitions singularities in the h plane, 

which is effectively the complex angular momentum plane for the 

meson channel. To insure the correct projection properties at 

the pole t = M2 these functions must have the property that when 

x=E(t)=eo+l’M2 

X/Y = Y/Z = d?- = M (2) 

Although further properties of X, Y, and Z will depend on the 

specific model used, we shall see that just the assumption that they 

are nonsingular at t = 0 will already lead to some interesting 

results. The important feature present in Eq. (1) is that it will 

yield polynomials in the Regge residue. That these polynomials 

appear implies some very definite assumptions about couplings 

and about how to continue away from the poles. For example, the 

couplings for vector mesons in this picture contain both y,, and kr, 

terms which make quite different contributions away from the 

pole ’ ‘. 

For the baryon propagator we need in general a factor like 

(1 +&)(I +i)(l +&) at the pole k2 = M2 with the indices 

appropriately defined. However, the Reggeized propagator is 
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expected to ‘be more complicated then in the meson case because of 

the presence of two types of multiplets. both the (56, 1) and (‘70, l), 

with different symmetry properties. The specific form one arrives 

at depends on the structure of the baryon spectrum one assumes, 

e. g. whether one wants 5,S even L and 7,O odd L or the more 

degenerate spectrum of the symmetric quark model. We shall 

return to this question later. 

MESON EXCHANGE 

We proceed to calculate the contribution of meson exchange to 

forward meson-baryon scattering by calculating the contribution of 

the appropriate quark graphs exhibited in Fig. (1). The graphs serve 

to tell us how to attach the indices of the external wave functions to 

those of the propagator defined in Eq. (1). For meson exchange we have 

contributions from the s, t and u, t diagrams, the sum of which 

exhibits the usual signature factor. The definitions of the external 

wave functions and the actual expressions to be evaluated are given inthe 

appendix. We note that the calculations yield the usual U(6)WF/D 

values for the t channel amplitudes B and A’ , i. e., F/D / B= Z/3 and 

F/DIA, =m. For the case of IAN charge exchange we find the following 

structure for the usual t channel helicity nonflip and flip amplitudes, 

where trivial overall numerical constants have been absorbed into the 

coupling constant g2 and we have set P’ = 1. 
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*’ C-1 s dX I?(-A) sx 1 + e-irrX 
2 2 

mw 
2(27ri) A- 1 (t) 

c I 

(4mp + t) + 4t Y(X, t)(m + p) 1 
dXr(-A) sx 

A - P (t) 

Pa) 

x (m + p) X(X,t) + t Z(X,t) 

[ ( 
1 

+ Y(A,t)(4mp + t) 1 (3b) 
As mentioned above the implied contour integration encloses both the 

Regge pole and any singularities implicit in X, Y, and Z. 

An essential feature of Eq. (3a) is that in the nonflip amplitude 

both Y and Z are multiplied by a factor t. The reason for this coefficient 

is easily understood from the form of the propagator in Eq. (1). Both 

Y and Z appear multiplied by tit and so the quark spin calculation must 

lead to a coefficient which vanishes at kt+ 0, i. e. , the coefficient must 

be a power oft. This is not a constraint for the helicity flip amplitude 

(B) since it appears in da/dt multiplied by t for kinematic reasons. One 

important result of the presence of these t factors is that the continuation 

of the A’ amplitude from the p pole (t = p2) to t = 0, in order to find 

dddt It z. in terms of the p coupling constant, is independent of the values 

of X and Z at t=O as long as they are not infinite. In particular if we set 

XG 1 and assume Y and Z have the values 1 /p and 1/ p2 at t = ).t2, as 

required by Eq. (2), and are regular at t=O, as required by the usual 
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analyticity constraints, we find 

4 
4 

= & (GeV)-* (4) 

where we have used P =(2/3)m,P o = -. 5 and the usual universality 

assumptions. This gives quite good agreement for g2pz-28 and 

s = 25 (GeV)2 when the measured value of the cross section is 

approximately .5 (GeV)-4. The result is the same for any model 

which fulfills the two constraints mentioned above including the 

models of references (1) and (3). It should be noted, however, 

that the continuation to larger positive t will be quite model 

dependent. A model with Y and Z constant, as in Ref. (3), will 

have a residue which increases much faster than one where Y and 

Z behave as t and 
T 

near the resonances as in Ref. (1). The data 

8) seem to favor the slower increase . 

The other very interesting feature of Eq. (3) is the zero 

structure of the polynomials in t which have appeared and which 

are peculiar to this quark propagation picture. The same t factors 

mentioned above cause the nonflip amplitude to vanish at small 
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negative t whereas in the flip amplitude, where X and Y are now 

adding, there are no small t zeroes. The actual location of these 

zeroes in the real and imaginary parts is, of course, dependent on 

the specific forms of X, Y and Z. For the case X = 1, Y = i, 

Z-h, the A’ amplitude, both real and imaginary parts, vanishes 

att z-.2. In the dual cut model discussed below the zero is at 

somewhat more negative t but still in a reasonable location con- 

sidering that a’bsorption has not yet been explicitly included. 

Although the discussion of the t factors given earlier does not 

constitute a proof, the general feature of having a small t zero 

in the nonflip amplitude and not in the flip amplitude seems to be 

rather basic to this quark propagator picture, in qualitative 

agreement with nature. Similar structure for the flip and nonflip 

amplitudes appears also for backward scattering. 

The expressions in Eq. (3) have been evaluated as functions of 

t to find do/dt utilizing the forms of X, Y, and Z suggested by 

Ref. Cl). We have taken 

(5) 

Note that Y and Z contain fixed singularities in the X plane. These 

singularities are necessary in order for Y and Z to behave 

appropriately at all resonances and still be regular at the origin. 
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The function of F(z) is the result of including the required 

neutralizer in the original dual amplitude integral 10) 
. Although 

it is not uniquely defined in the dual model, it must have the general 

properties that F(0) = 1 and F(z) vanishes faster than any inverse 

power of 1 z 1 as / z I+ m with z constrained to ‘be outside of some, 

as yet unspecified, region about the positive real axis, e. g., 

lax z I>E. It must, of course, be rather badly behaved along the 

positive real axis in order to satisfy the usual theorems about 

11) analytic functions . Following the suggestion of the usual 

Veneziano model in which the wedge about the positive real axis, 

where the amplitude has poor asymptotic behavior, is treated as a 

cut, we take the attitude that the function F also represents a cut. 

In the calculations discussed here we have used F(z) = e 
-k& 

which shows the cut explicitly 12) 
. 

The result of calculating da/dt for k = 0, no neutralizer, is 

illustrated in Figure 2. This is clearly a catastrophe. The rapid 

growth results from the fixed cut and pole terms which behave 

10 
like s times polynomials in t. The results for k equal 2.8 and 

3. 6 are illustrated in Figure 3a. b. In all these calculations the 

values P 2 = 0.6 BeV2 and m2 = 1.0 BeV2 have been used. We see 

that the general structure of the individual amplitudes is reasonable, 

at least in terms of the zeroes present. However, the values for 

da/dt shown in Figure 3b can, at best, only be considered as being 



-ll- THY-21 

in qualitative agreement with the data. Another problem is 

polarization which turns out to ‘be negative in the present model 

in clear disagreement with the data. This is primarily due to the 

fixed cut structure plus the fact that the neutralizer form used 

here has little effect on the phase of Y and Z. One could, in 

principle, try to find a member of the general class of neutralizer 

functions which would give a better description of the data. However, 

without a more specific model in mind, this does not seem very 

instructive. 
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BA,RYON EXCHANGE 

Now let us briefly survey the situation for baryon exchange 13) 

as calculated in the present picture. The major feature of the 

data which the polynomial Regge residues appearing in such quark 

models hold some hope of explaining is the rapidly varying residue 

of the A exchange. Such variation does not appear in simple Regge 

or Veneziano models. 

Before proceeding it is useful to review again why these 

polynomial residues arise. They result from making very specific 

assumptions about how the amplitudes are defined in terms of 

external U(6) wave functions, about which representations of 

U(6) x U(6) x O(3) should appear as resonances, and about how to 

continue away from the poles. In the present work we shall go 

again to a quark picture in order to decide which resonances appear. 

In particular we shall assume that the spectrum of the symmetric 

quark-harmonic oscillator model of baryons 2, is a reasonable 

approximation of nature. As suggested by Mandelstam 14) this 

spectrum will result on the leading trajectory if we calculate the 

contribution of the u, t quark diagram (See Figure lbb) using the 

usual Veneziano amplitude for the internal excitations but include 

an extra factor (l/2?, where n is the degree of excitation, in the 

s, u contribution (Figure 1 c). This extra factor appears in a 
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straightforward fashion in the harmonic oscillator formalism for 

the Veneziano amplitude 15) and can be interpreted as accounting for 

the extra degree of freedom for the baryons (2 internal sets of 

harmonic oscillators) as compared to the mesons (one set of 

harmonic oscillators). Now we need only define quark projection 

operators for each participating quark line as we did for the meson 

case, i. e., ti a (1 +x) factor for each quark. This yields a form 

analogous to Eq. (1) except for the absence of minus signs and the 

presence of a W( X, t) term which behaves like 1/M3. The results of 

this procedure will be given explicitly below. 

First it is important to note that, although the symmetric 

quark model spectrum has pure 5,S at L = 0 and pure 7,O at L = 1, 

both 5_6 and 7,O representations are present at all higher L. This 

does not correspond to the simple pair of exchange degenerate 3_6 

trajectories which appear in the meson case. For this baryon 

spectrum signature will no longer appear in the usual way. 

We present here the amplitudes calculated as described above 16) 

for the leading trajectories in the I 
U 

= 3/2 and I, = l/2 channels. 

This is the quark spin 312 contribution which corresponds to the 

A6 - NB exchange in the usual Regge theory. The two amplitudes 

given correspond to the usual s channel helicity amplitudes at 

larges. (o=m+q,1’=1) 
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Iu =3/2 
(A+mB) 

+2ou(7Y+uW) 1 + ( 2 -s? [( 5x+ 1 IUZ ) (u+a2) 
+ 2uu(13Y+3Wu) 

13 
(6a) 

I =3/2 
(B) u 

1 
A 

+ (u+02) (5Y+3uw) +c+ 
[ 

(3XM3uZ) 2 ui 

+ (u+ u2)(11Y+5wu) 
II 

(6b) 

(A+mB) 
Iu= 112 

+ 2ou(17Y-13uW) + ( -l +, A ~ox-14uz) (u+ 02) 
-I 

+ 2ou(8Y-12uW) 
1 

I = i/2 
(B” =A s 

2Tii 
mp J 

(7a) 

+ (u+02)(11Y-15uW) 1 + 

+ (u*o-2)(14Y-10uw) 
13 

(7b) 
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Note that the usual signature factor is definitely absent but 

that the new structure does have zeroes in the appropriate places. 

Specifically the 1=1/2 amplitude vanishes for X=0, a ground state 

52, and the I-312 amplitude vanishes for X= 1, the pure 7,O L=l. 

Looking at the I = 3/2 term we may determine g 2 in terms of 

the A(1236) coupling constant and then calculate backward n-p 

scattering. We find that 

dc 
du 

_ 1 A+mB[ 2 = y (1g s)-i.8 4 

u=O 64~sM2 
= 1.6s -I’ 8(GeV)-4 

N MN 

This is in reasonable agreement with the data, which shows 

d a/du o - 5 x 10T3 (GeV) -4 
at s = 20 GeV2. 

We note that again the continuation from the first resonance 

(u = Mi in this case) to u = 0 does not depend on the specific form 

of Y, Z, and W as long as they have the appropriate values at the 

resonance and are regular at u = 0. However there is some 

dependence on the signature structure of the amplitude, i. e., the 

presence or absence of ordinary signature and the choice of which 

representations are present as discussed above. So to some extent, 

the agreement of Eq. 8 with the data is a confirmation of the 

symmetric quark model, at least as represented here. 
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A more instructive test is the continuation from the 

A resonance (1236) to the F37 resonance (1950). In order to make 

comparisons with previous work as outlined in Ref. (13) we study 

the baryon reduced Regge residue defined as 

’ R = ‘A+mB -%Gi YB (9) 

where the y’s are the residues at the pole in the )\ .plane of Eq. (6) 

times the factors s -I-’ @) (r/-L (u))) -* MJ where 

the last factor accounts for the absence of signature in the present 

model. 111 If we assume X, Y, Z, W to have the values 1, -, 
$i 7 32’ 

at the poles we find that yR changes by a factor of approximately 

512 in going from the A to the F37 in quite good agreement with the 

observed values. If one assumed constant values for X, Y, Z and W 

and the usual signature factor,the ratio of the residues at the two 

resonances is of order 10 in serious disagreement with the data. 
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CONCLUSION 

We have seen that by using a model with explicit quark spin to 

construct Regge amplitudes for TN scattering, with projection 

operators included to insure the appropriate resonance structure on 

the Regge trajecture, we are led to polynomial Regge residues. 

Independent of specific assumptions about the structure of the 

resonance spectrum beyond the first resonance on the Regge 

trajectory, we can already notice some encouraging results. 

Continuations of the Regge residue from the first pole down to t or 

u equals zero yield cross sections which agree quite well with 

nature. The polynomials also exhibit zero structure which is very 

suggestive of what is observed. Calculations utilizing assumptions 

and detailed structure appropriate to a specific dual quark model 

yield results which are interesting but not conclusive due to the 

ambiguity of the neutralizer function, an essential feature of the 

model. A more specific picture is required in order to proceed. 17) 

In general the continuation of the Regge residues away from the 

region between the first resonance and t or u equals zero is quite 

model dependent and deserves further study. The results discussed 

above suggest that the form present in the dual model, where the 

resonance structure of the symmetric quark model appears at all 

levels of excitation on the leading trajectory, agrees quite well with 

the data. More detailed research including the study of the 
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nonleading terms, e. g., the pion and nucleon trajectories, should 

serve to illuminate the usefulness of the quark picture more fully. 
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APPENDIX 

The external pseudoscalar meson states are described by 18) 

M(q) (1) 

where p is the 3_6 multiplet mass and P is the usual pseudoscalar 

U(3) matrix. The external nucleon is given by 19) 

ABC 
4J (P) 

=Tk 
C 1 D 

abc ab EABDUc(P) BC (11) 

+ cyclic permutations 
3 

where m is the 5_6 multiplet mass and u,(p) is a Dirac spinor, and 

B is the baryon U(3) matrix. The matrix C has the properties that 

CT= CL c -1 
= -c, c-17pc = -(yJ T, c-l 

T 
v5c = Y 5’ 

and c= C. 

To within some overall unknown coupling constant the 

contribution to the scattering amplitude of the s, t quark diagram 

(Fig. la) is found by evaluating the expression 
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(1 L) (dD) 
T s tP $(P’) M(q’ ) M(q) * (P) 

W-Q (eE) 

(III) 

aA bBK C (k) Cc) 
(1) 6 (1) 6 6 6 D 

fF gGHD (h) (d) 

The calculation of the results given in the text is straightforward 

but tedious. To obtain the given normalization the constant factors 

in the external wave functions have been absorbed into the overall 

coupling constant. The calculation of the u, t contribution to meson 

exchange is the same as the s, t contribution with the exchanges 

s - -s, F-P, and qu -9’. Baryon exchange is calculated in an 

analogous fashion for the appropriate quark diagrams using the 

baryon projection operator. 
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FIGURE CAPTIONS 

Fig. 1 Quark diagrams for meson-baryon scattering. A~, B, C. 

etc., are indices as they appear in Eq. III of the appendix. 

Fig. 2 Calculated differential cross section with no neutralizer. 

PL is 5.9 GeV/c. Some data points are shown for 

comparison. 

Fig. 3a: Calculated imaginary parts of the individual amplitudes 

with the neutralizer parameter k taking the values shown 

and P L = 5. 9 GeV/c. 

3b: Differential cross for the k values shown and 

P 
L 

= 5.9 GeV/c. 
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