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ABSTRACT 

We use the partially-conserved axial-vector current (PCAC) 

hypothesis to show that the matrix elements for y+y - ,“+lro+no and 

y+y - v’+v++v- vanish in the soft-r’ limit. This, combined with photon 

gauge-invariance, implies low energy theorems relating these matrix 

0 0 + - elements to the matrix elements for yfy - pi and y- TI +fl +TI . Since 

the magnitude of the former is determined by the n ’ lifetime while the > 

ratio of the latter to the former is determined in a model-independent 

way by isospin and low energy theorem arguments, a model-independent 

prediction for the yfy- TI+TI+TI amplitude can be given. Our results 

agree with those of Aviv, Hari Dass and Sawyer in the neutral case, 

but not in the charged case. We give a diagrammatic and effective 

Lagrangian interpretation of our formulas which explains the discrepancy. 



-3- THY - 18 

The reaction y+y -f TI+~T+IT is of interest, both because it may be 

observable in electron-position colliding beam experiments’, and because 

it is relevent to theoretical unitarity calculations‘ of a lower bound on the 

decay rate of so - p+p-. In recent papers, Aviv, Hari Dass and Sawyer3 

and Yao4 have applied effective Lagrangian methods to calculate the 

matrix elements for the neutral and charged cases of y+y + ~+~T+IT. The 

fact that Refs. (3) and (4) are in disagreement has prompted us to repeat 

the calculation by standard current-algebra -PCAC methods. 
5 

Our 

results agree with Ref. (3) [ but not with Ref. (4)] in the neutral case 

0 0 0 
y+y + lT ill trr , and disagree with both Refs. 3 and 4 in the more interest- 

0 + - 
ing charged case y+y -c TT trr +n . After briefly discussing our method and 

results, we explain the reasons for our disagreement with the earlier 

calculations. 

We begin with the simple, but powerful observation that the matrix 

elements ho+- E h[TY(kt) + y(k2) -. ~‘(4,) + a+(q+) + v-(q-)] and %‘l OooE 

h’L[YUQ + Y(k2) - HOklo) + ho + TO(S,‘? 1 vanish in the single soft 

ITO limit oo- 0, with the remaining two pions held on mass shell. To see 

this, we follow the standard PCAC procedure’ of writing the reduction 

formula describinghO+- orb? Ooo with the pi-zero off shell, and then 

replacing the pi-zero field rr” by the divergence of the axial-vector current 

(M;f) -f 3 x33 5A. (The normalization constant f is given by f * f*/ (v? Mi ) = 

0. 68 Mx, with f, the charged-pion decay amplitude. ) Because the correspond- 

ing axial charge Fz commutes with the electromagnetic current, no - 
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equal-time commutator terms are picked up when the derivative a is A 

brought outside the T - product in the reduction formula. Integration by 

parts then makes the derivative act on the 8’ wave function, producing a 

factor qox. Thus bothho+- and%?!” are proportional to qo, and since 

they contain no pole terms which become singular as qo+ 0, they vanish 

in this limit. Note that this argument cannot be affected by the presence 

of divergence anomalies7 in ak3zA, since all divergence anomalies vanish 

when the four-momentum q. associated with i3L3:hvanishes. 8.9 

In addition to the soft rr” limit which we have just derived, we know 

that hot- and Nooo must be gauge -invariant. That is, they are 

bilinear forms in el and l 2 (the polarization vectors of the two photons) 

and vanish when either l i is replaced by ki or l 2 is replaced by k2. We 

can now invoke the standard lore of current algebra low energy theorems, 
5 

which tells us that since we know three independent pieces of information 

about the low energy behavior of 
ho+- and jyfloo 

(the q. - 0 limit, gauge 

invariance for photon 1, and gauge invariance for photon 2), we can 

determine 
ho+- and -)),$I00 

from their pion pole diagrams up to an error 

of order 0 (q0kik2) at least. 
10 

In particular the terms in %X0+- and htooo 

quadratic in the momenta kl, k2, qo, q+(q;), q-(q;) are completely 

determined. The relevant pion pole diagrams are illustrated in Fig. 1. 

The pion-pion scattering amplitudes which appear are evaluated from the 

current algebra expression 
ii,12 
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bc dadi (sb+Q2-M~l + 6 bd 6 ac [ (qb+qd)2-M;l + 6 cdbab[ kic+sd)2-M21 a lr 3 

while the y+y - r” and y * rr’+rr++~- amplitudes are expressed in terms 

of coupling constants FV and F 
3lr 

defined by 

h [ Y(kl)+y(k2) -a 7’1 = i kakP cy e6 
1 2 1 2 Eapy6 Fr’> 

b-11 Y(kl) - no+ x+(q+) + r-(q-)] = i k; ei qz q6_ E 
4Y6 

F3=. 

The coupling constant F” is related to the 1~’ lifetime by 
13 

TO -I = (M; /64r) (FT1)2 ; 
?T 

comparison with experiment gives 1 FT/ = (a/8)(0. 66*0.08 “,‘-I, with 

(Y the fine structure constant. While the coupling constant F 
3lT 

has not 

been measured, both the theory of PCAC anomalies 14 
and model-independent 

isospin and low-energy theorem arguments (see below) predict 
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3rr 
eF=f , 

-2 FlT 
e = (47~)“~. (4) 

Combining Eqs. (1) and (2) with the appropriate propagators to form the 

pion pole diagrams, and adding the unique second degree polynomial 

which guarantees gauge invariance and vanishing of the matrix elements 

asq -0, 0 we get the following predictions for ho+- and ho”: 

do”= i fV2Frrkyk! e:el eepyS 
(qo+Q2+ (qO+q~)2+(q’0+q~)2-3M~ 

ho+ s; + q;‘2 - Mt 
I 

= i fS2FakakPeYe6 e 
1 2 1 2 “pyd 

(when 3 final oions 
are on shelli 

(W 

[ 

1- (q++q-)2 - M: 
(qo+q++q_) 2 -Mf, 

-ieF3.ireye’ 
(2q+-k2)6 k;ki+-k2)\: 

12 

ir 
k;- 2q+ s k2 

(2q -k2J6 - - k; 4; (q--k2)T fayot 

k;-2q . k2 

- ( 
1 

k-k 
+ 1 2 

y-6 

7 

(5b) 

+ (kl-k$a qoT ~~~~~ . 
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These equations are our basic results. 
15 

According to Eq. (5), hXooo is suppressed relative to hz”-, in 

agreement with the conclusion of Aviv et al. We disagree with the result 

for tioo quoted by Yao, who has (through an apparent algebraic error) 

replaced -Mt in Eq. (5a) by -4M2. In the case of strictly massless pions, 

T( our result for JQoo becomes the simple statement that the terms in the 

matrix element quadratic in the external momenta vanish. This result 

can be immediately generalized to the reaction y+y - n.‘, as follows: 

The PCAC argument given above tells us that in the limit when any one 

rr” has zero four-momentum, with the other n-l ~‘1s on mass shell, 

the matrix element h(yty+ nrr’) must vanish. In addition, gauge invariance 

implies thathmust vanish when either of the photon four-momenta ki, k2 

vanishes. Taking four-momentum conservation into account, this gives 

us nt2-1 = n+i independent conditions on the low-energy behavior of h. Since 

for massless, neutral pions the pion pole diagrams (tree diagrams) sum to a 

constant, independent of pion four-momenta, the n +1 conditions can be 

satisfied only ifh(y+y +nrr’) vanishes 
16 

up to terms which are at least 

of order (momentum) 
n+l 

. 

Our result for?%-‘+- m Eq. (5b) disagrees with the formulas quoted by 

Aviv et al. and by Yao, both of which overlook the class of pole diagrams 

proportional to F 3x 
, The formula of Aviv et al. also has the 1 in the square 

bracket multiplying Frr replaced by i/3. In order to better understand 

this latter discrepancy, it is helpful to have a diagrammatic interpretation 
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of the various terms in Eq. (5b). This is given in Fig. 2, which illustrates 

the lowest order perturbation theory contributions to h 
000 

and ‘ho’- 

in the Gell-Mann - Le;y o- model. 
17 

The first and fourth rows give 

just the lowest order contributions to the pole diagrams of Fig. 1. The 

c- pole diagrams in the second row can clearly be represented as 

matrix elements of the effective Lagrangian 

i $-z,,, = 2 f-‘Fr’ F”‘Fy6 eDpy6 IT’:. c , (6) 

with FaP the electromagnetic field-strength tensor. As a check, we note 

that x02,.; = (fl0)3 0 + - 
+2lTl?lT, and since the matrix element of (n0)3 has 

a Bose symmetry factor of 6, the contributions of Eq. (6) to -hl 000 
and 

to ho+- are in the correct ratio of 3:i. Let us turn next to the five-point 

functions in the third row. Aviv et al. assume that these are 

represented by the same effective Lagrangian structure as in Eq. (6). If 

this were so, a five-point contribution of -2 f -2 hz” to fiooo would imply 

a corresponding contribution of -(2/3)fm2w to h?‘- , which would then 

combine with the o- pole diagram to give a total non-pole contribution of 

(i/3) f-2h-171. This is the origin of the i/3 in the formula of Aviv et al. 

In actual fact, however, we find that the five-point diagrams are not 
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described by Eq. (6), but rather by the effective Lagrangian 

i 2:;:” = G e F3”(f?Ay) A6 eDy6+(8%‘) 2:‘; . (7) 

Eq. (7) still couples the three final pions through a pure I=i state, as 

required by G-parity. In the charged pion case, Eq. (7) obviously leads 

to the five-point contribution listed in the third row of Fig. 2(b). 

Although not gauge-invariant by itself, this contribution combines with 

the pole terms in the fourth row of Fig. 2(b) (which are also not by 

themselves gauge-invariant) to give a gauge-invariant sum. In the neutral 

case, using the fact that the matrix element of a6no (a O 2 is 2 i(q ) +q’+q’+) = 0 0 0 

2i(kl+k2) and using Eq. (4) toeliminate F 3n in terms of Frr , we find that 

Eq. (7) just gives the gauge-invariant contribution -2f -2 w, as required. 
18 

Finally, we note that while Yao obtains the correct value of 1 for the constant 

term inthe square bracket multiplying Fr, he gets this by using an incorrect 

effective Lagrangian, which does not respect the A I=l rule, to generalize 

from the neutral to the charged case. The moral is that effective 

Lagrangians must be handled with caution. When ambiguities arise as to 

the form of the effective Lagrsngian, they must be resolved by reference 

back to the basic current algebra relations, which the effective Lagrangian 

is supposed to represent. 
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Figure 1: Pion pole diagrams for (a) the neutral and (b) the charged 

cases. 

Figure 2: Lowest order diagrams contributing to (a) -hi”’ and 

(b) ho+- m the Gell-Mann-L&y c- model. The single 

solid line propagating around each loop denotes the nucleon. 

In this order of perturbation theory, f 
-1 

= g,/ MNs with gr 

the pion-nucleon coupling constant and with MNthe nucleon 

mass. [ The large black dot at the four-pion vertices denotes 

the pion-pion scattering amplitude of Eq. (1). To lowest order 

in perturbation theory, this arises as the sum of a direct 

four-pion interaction (coming from the term (z-2) 2 in the c - model 

Lagrangian) and of pole terms involving 4 - mesons exchanged 

between pairs of pions. ] 
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