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I. INTRODUCTION 

One of the remarkable things about duality is that it leads to the 

formulation of very esthetic theoretical ideas although it has its roots 

in the structure of strong-interaction data. Surely this marriage of 

conceptual beauty with experimental observation is no accident. The 

first steps towards the construction of amplitudes that were “dual” 

have been excellently described in several review articlesi; in these 

lectures we would rather like to show the emergence of a very funda- 

mental group theoretical structure that seems to underlie all dual 

resonance models (DRM) built to date. Since no DRM duplicates the 

data closely enough, we would like to understand how to add the missing 

ingredients without affecting the properties we like about the more 

primitive models (like factorization, crossing, Regge behavior, etc. ), 

As we are only at the beginning of our understanding of duality, 

we can only talk at the moment about mesons and ask the more prag- 

matic reader to bear with us while we try to unravel this very mysterious 

concept. 

Lectures presented at the 1971 Boulder Summer School. 
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The other purpose of these notes is to familiarize the reader with 

the mathematical techniques used in deriving DRM’s, Hence the charac - 

ter of what follows will be rather technical as it must be at this stage of 

the art. 
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11, MATHEMATICAL PRELIMINARIES 

The work of Koba and Nielsen’has shown the relevance of projec - 

tive transformations in dual resonance models (DRM). These transfor- 

mations are generated in the complex plane by real Mobius transforma- 

tions which are locally isomorphic to the more familiar SU( 1,1) group, 

the non-compact partner of SU( 2). We concentrate from now on in the 

study of SU(i,i) so as to understand its role in DRMs in greater detail. 
3 

If h is an element of SU( 1, +) it is in one -to -one correspondence 

with the pseudounitary unimodular 2x2 matrix 

1al2 - IPI = 1, 

where cy and 6 are complex numbers and the star denotes complex con- 

jugation. Its Lie algebra is generated by the operators Lo, L+, and L- 

which obey 

[LO’ I,*] = +L* ; 

and has a Casimir operator 

L2 = L+L- + L-L+ - Lo”. 

(2) 

(3) 

In the complex z-plane, h corresponds to 

z+ (hz) E z’ = (4) 

In particular it maps any point on the unit circle onto the unit circle 

In order to construct the representations of the SU(‘l,i) algebra, we 

choose a certain representation for the generators 
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L+ = -& z*l (z -$ * J) (5) 

for which 

L2 = -J(J+i) (6) 

is automatically a c -number, It can be shown that there exists basically 

two types of unitary representations of the algebra: those for which the 

spectrum of Lo is unbounded and those for which it is bounded. For 

reasons that will become clear later we concentrate on the latter ones. 

There we again have two subdivisions since Lo can be bounded either from 

above or below. These unitary irreducible representations (UIR) of the 

algebra are 

I. D,,“’ , where J is a real negative number, as required by uni- 

tarity, and the spectrum of eigenvalues of Lo is bounded below 

Lo = -J, -J+i, -J+2, , 

and it is spanned by the states 

) J,m)+ = J 
(m-l -2J)! m-J 

m! 
z (7) 

Note that 

L-1 J,W+ = 0, (8) 

and the states are generated by successive application of L+ on 1 J, O)+. 

2. D;-‘3 where again J is real and negative and the spectrum of 
- 

Lo is bounded above 

Lo = J, J-l, J-2, 

It is spanned by the basis 
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1 J,m)- = / 
(m -1 -2J)! -m+J 

l-II! 
z (9) 

and 

L, IJaW_ =O (10’ 

so that the states are generated by the successive application of L on 

1 J,O) The connection of these representations to the DRM’s is achieved - 

in the following way. Introduce the operator functions4 

m 

FpW = 
% 

a (m) 1 J,m)+ 
P 

m=O 

m 

Fp(z! = 
1 

adm’tl J,m)- 

m =0 

ED;+) (IId 

CD;-’ (Ilb’ 

where the coefficients of the basis vectors are harmonic oscillator 

operators5 obeying 

[ 

a (ml, a (n) = a (m)t, a (n)t = o 

P CJ 1 [ P CT 1 

[1 a Cm), aW n,m = O,l, 
P 0 1 

= g 
pcr’n, m (12a) 

we use the metric go0 = -gii = -1 so that we immediately see that the 

(n)t 
aO 

~111 mtroduce negative norm states in the theory. (This disease 

plagues all relativistic theories. ) The vacuum state 10 > is defined by 

a,‘“’ 1 o> =o n =O,l, (12b) 

Furthermore consider the case n = 0 to be describing a translational 
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mode,‘that is, let J = - E /2 where f is a positive infinitesimal. Then, 

when written in terms of the canonical coordinates, 

qp = & [a~“)++a~O)j 

$7 
pP = 2 

C 
(O)T_ 

ap 
a (0’ 

P 3 

(1W 

(13b) 

Fp(z) and gP(z) are separately singular as E - 0; however, this singu- 

larity is absorbed by taking their sum 

QpW = FpW + GpW (14) 

=q +ipPlnz+x -$- [ap(n)tz-n+adn’zn], (15) 
P 

n=i 
which can be loosely interpreted as the dual generalization of a coordin- 

ate. Another quantity of interest is the “generalized momentum” 

‘P(‘) = - i ’ dz 
d QpW 

m 
(16) 

=pP+i 
2 

&a 
I 

(n)g, -n _ a Mz+n 
P P 1 

n= 
($7) 

The relevant representation of the SU(1,i) operators is now obtained by 

taking the matrix elements of the operators Eq. (5) between the states Eq 

(Ila) or equivalently Eq. (Ilb): 

Lo =(F(LO/FJ = (m + 5 I ,(W a(m) 
(18a) 

Ij 
m=O 
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L+ =(FIL+ /F) = 2 j= a(m+l)t. a(m) (18b) 

m=O 

L -=(FlL- [F) =~~~)a(mi’. a(m+i). (18~) 

Another more elegant way of obtaining the representation of the SU(1,1) 

operators is to consider the Fourier coefficients of the square of the 

“generalized momentum”7 

L 
1 dz -m =- 

-m 2ir 
-Z 
7. : Pll(z)Pi*(.) : (19) 

where z is on the unit circle and the normal ordering applies to the 

periodic modes only. Specializing expression (19) to m = 0, *I, we 

obtain the usual representation of the SU(1 ,i) generators, namely 

(2Oa) 

+jm(m + 1) a(m+“t. (2Ob’ 

m(m + 1) a(m) (2OC) 

m=1 

Here, unlike the previous representation we have already taken E to 

zero. However, for calculational purposes we prefer to use Eqs. (18) 

and let E * 0 only at the end of all calculations. 8 

For general integer m, Eq. (19) yields 
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These operators were first found by Virasoro9 inconjunction with the 

ghost compensation mechanism that occurs in the DRM’s. They form 

among themselves the so -called Virasoro algebra 
10 

[Lm’ Ln] 
= 2(n -m)Ln+m + zn(n’ -1’6, -m’ (22) 

The generators 1/2n L+n 
2 

and I/n Lo +(n -*)/3n form, for a given n, an 

SU(i,1) algebra and generate finite transformations of the form 

Z-+ z’ = cYzn+p 
n 

I I 

i/n 
* 98 n n =1,2, (23) 

CY +p. 

At the present moment, however, the relevance of this algebra to 

duality has not been clarified although it is suspected to be very deep. 

All we can say is that it acts as a gauge group for dual models. More 

will be said on this in the course of these lectures. 

The major part of the mathematical equipment needed in dual 

“modelry” has now been presented, and we turn our attention to the 

problem of the construction of dual factorizable tree amplitudes. 
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III. GROUP THEORETICAL RULES 
FOR THE CONSTRUCTION OF DUAL AMPLITUDES 

We wish to emphasize that the rules we will enunciate in this 

11 
section are not the product of very deep insight but rather of a detailed 

analysis of the N-point generalization of the Veneziano amplitude. In 

addition, we believe them to be necessary but not sufficient. 

1. Associate with the absorption of a particle of momentum k 
P’ 

with various quantum numbers collectively labelled by {A}, a vertex 

operator V(kp,{X);z), where z = e 
-ir 

2. In order to preserve the correct selection rules at each ver- 

tex, we require that V transforms under the groups which generate {X} 

as the field of the absorbed particle. 

3. At this stage, the dynamical assumption of duality is expressed 

in terms of an additional transformation requirement. Namely we 

demand that 

rLo, V(ks{xl;z’l = - z -& V(k,{A};z) (24) 

*i 

FL+, V(k,{X);z)l = -& (25) 

where Js in this case is a scalar function depending on the various 

quantum numbers of the particle 

J = J (m2 j c”‘); 
S S > I (26) 

here j is the spin and c {xl represents the Casimir operators of the 
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groups which generate {A}. This means that the additional feature of 

dual vertices is that they are labelled by the Casimir operator of SU( 1, t) 

If T is a finite unitary transformation of SU( 1, i), it follows that 

2J 
TWd+)T+= !cu”+$z! sV(k,{A);z’) (27) 

z, = uz+P 
* * (28) 

c! +p z 

with 

4. An arbitrary number of particles can interact in a dual manner 

only if their dual vertices have the same SU(1,i) spin, i. e. , 

JS(mi2, j (1)” ) = Js(m22,.i (2)’ ). (29) 

which implies, as we shall see later, relations between the various 

quantum numbers of particles. The origin of this requirement becomes 

clear where one tries to build amplitudes out of these dual vertices 

5. The factorizable dual amplitude for the scattering of an ar- 

bitrary number of particles in a given order is just given in the tree 

approximation by the vacuum expectation value of the product of their 

dual vertices taken so as to make an SU( 1,1) invariant. 12 
The amplitude 

corresponding to Fig. 1 is then given by 

N 

AN(kl,. ,kN) dzl.. .dzNKN(zl,. ,zN)6 (4) 

~olV(kl’{A}i;Z1)V(k2,{A}2;z2). .V(kN,{X}N;zN)lO>, (30) 
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The requirement that AN be SU(1,1) invariant imposes severe 

restrictions on the kernel function KN({z]). In fact, given the trans- 

formation properties (27) of the dual vertices, we have been able to 

find such a kernel only when all the external particles had the same 

SU(1,1) spin Js, which explains the previous requirement. We now 

show how to build K 
N 

up to any SU(1,i) invariant function. 

It is easy to see by using the projective invariance of the vacuum 

and inserting T’T between the vacuum and V(ki, {A}*, zl) and pushing 

T to the right by means of Eq. (27) that any such kernel must obey 

N 2J (i) 

dzi.. .dzNKN({z}) Fi /LY” + &l ’ = dz;. .dzhKN({z’}) > (31) 

where 

ZI = 
cUZi+p 

i +b * i =1,2 ,..,, N. 
c! + p-z. 

1 

From the last equation, it is straightforward to see that 

dz! dz. 
-2z-L. 1 
Z! z. 

1 1 

as well as 

Z! 
1+1 

- z! 
1 I 

= 
z. - 75. * $ 

1+1 1 (a- +p zi+*)(cy +P+zi) 

(32) 

(33) 

(34) 

We find a solution to Eq. ( 31) when all (i) Js are equal, say 
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J (i) = J 
s - s 

i =I,. N, (35) 

namely 

N 
KN(zl>..., ZN) = 

1 
II l’i+* -‘iI 

-Js -1 

zl”‘ZN 1~1 ’ (36) 

where we have defined zN + 1 3 zi We point out that this solution is 

not unique as it can be multiplied by any SU(1,i) scalar function of the 

zi’s, In particular, we can put an ordering condition on the arguments 

of the zi’s according to the order in which the vertices appear. As we 

shall show by example, this condition is necessary for the factorization 

of the amplitude. Hence one factorizable amplitude is given by 

AN(kl,...,kN) = J fi 2 /z~+~ - zilwJvl @(ax zi+l - arg zi) 1 
N N 

401 ji V(ki,{X)i;Zi)(o> d4) (2 ki). (37) 
i=l 1 

Since the integrand is invariant under a three parameter group, it is 

really a function of N-3 variables. So far we have not said how duality 

comes about. The fact is that all the vertices we shall consider give 

rise to cyclic invariant amplitudes. All we can say is that the covariance 

under SU( 1,i) does not seem to be sufficient to insure cyclic invariance. 

It may be that covariance of the vertices under the Virasoro algebra is 

a requirement for it. 
13 However, in the following we shall not concern 

ourselves with such highbrow considerations; rather we aim to show in 

detail how the various ideas discussed above come into being when one 

considers specific vertices which obey our criteria. 
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IV. CONSTRUCTION OF THE N-POINT VENEZIANO FUNCTION 

In order to give content to the preceding section, we give in great 

detail the derivation of the N-point function for external scalar particles 

using as a starting point the dual vertex for the absorption of a scalar 

particle. We first observe that 

C =O' 
Fp(z) 

I 
= - z & FpW (38a) 

[L,, Fp’z’] = - -$ (z 2 .+ )Fp(z) (38b) 

where we have used representation ( $8) for the generators and the com- 

mutation relations ($2). This means that FP( z) transforms with an 

SU(i,1) spin J, = -s/Z. The same holds for gp(z). This is a very im- 

portant point, and it will be used for functions for which Js is not infini- 

tesimal when we want to add extra quantum numbers to the model. 

Introduce the vertex for the absorption of a scalar particle 
14 

2 
-& ik.l?(z) ik.F(z) 

V(kp, (0 }; z) 3 Vo(k, z) = e e e (39) 

where the factor appearing in front cancels the infinity that appears in 

I? and F . In fact we can rewrite it as 
P P 

Vo(kb; z) = : .ik.Q(z). 
(40) 

where the normal ordering : : only applies to the periodic modes. In 
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order to see if this is a ~suitable dual vertex, we must check its com- 

mutation relations with the SU( 1,1) generators. 

Since we now approach the realm of detailed calculations, it is 

good to quote a well-known and probably forgotten identity: if A and B 

are any two operators, then 

A 
e Be -A=B+[A,~I+& [A,[A.B]] + . . . . . (41) 

where the other terms are left to the imagination of the reader. Then, 

it is easy to check that 

C LO’ Vo’k z!] = - z & V&k, z) 

E =*, V,(k,zl] = - $ ( z-&&$k2) Vo’k> z) 

(42a) 

(42b) 

where we have used the mathematically ambiguous 
15 

form 

lim E m 1 
c 

m+s -I)! = 1 

E-O m=O 
Ill! (43) 

Nevertheless, the end result is the same whether or not one chooses 

to calculate using a representation where E is not yet equal to zero. 

The use of Eq. (43) yields consistent results and we shall keep with the 

use of the representation (18) for the generators. 

This means that for a scalar particle Js = - 2 ik2. 
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Introduce the trajectory function 

a(x) = a0 +; x (44) 

which means that J, = -ao, the intercept of the mother trajectory. Now 

that we have a respectable vertex we can try to calculate an amplitude 

for the absorption of any number of scalars. 

Consider the vacuum expectation value of N scalar vertices, the 

computation of which is made easy by realizing that the commutator 

between F and I? is a c-number, namely 

Fp'zj), eo(Z1,] = gpo( ; - InIZj-Zll - ti@jl) (45) 

where 

i 

+1 argz.> argz 

$jl = 
.I 1 

-1 argz.< argz . 
J 1 

(46) 

Needless to say the last equation is obtained by using Eq. (ii) and 

noting that 

‘l-‘j _ - - - 
dqq- 

i41j Izl-zj I (47) 

where z is a point on the unit circle, as well as the expansion for the 

logarithm 

m 

hi-x)=- $. 
I 
n=l 

(48) 



-i6- 

We can then use the identity 

eAeB = eBeAe[A> B 1 
(49) 

which holds only when [A, B] is a c-number. It then follows from 

Eqs. (45) and (46) that 

N 
1 

c -z i=l 

k; 

=e 
N 

1 
c 

k.’ 
-zTiE1 1 

=e 

-I[ 
e j<l 

kj.F(zj),$ .+(zl)] 

- $~~jek~+~l kj.%bjl - 
II 

j<l 

By noting that 

c ki.kj =;(ki +....+ kN,2-;fki? 

i<j i=i 

(511 

we get rid of the infinite factor by using in addition conservation of 

momentum. The phase factor can be absorbed only if I$. does not 
31 

change sign, which shows the need for the ordering condition on the 

angles. As stated before we can form an amplitude only when all the 

SU( 1,1) spin are equal, i.e. in this case only when all the scalar 

particles have the same mass. In this case the amplitude is given by 

AN(ki,. ,k$ = 
dz. 

~ l’i+l-‘i 
1 

k:k 

l(52) 

which is, up to a factor, the Koba-Nielsen‘ form. Note the disappearance 



-17- 

of the kernel when a = 0 
1. We have stated above that, due to the invari- 

ante of the integrand under a three parameter group, three integration 

variables are superfluous. So as to give meaning to this statement, we 

now proceed to show how the above reduces to the well-known B-function 

in the case N = 4 (see Fig. 2). 

Introduce the anharmonic ratio 

(z,-z,)(z,-z,) 
x = (z1-z3)(z2-z4) 

which is real when all the z’s are on the unit circle. Then 

(l-x) = 
(z1-z4)(z2-z3) 

(z,-z3)(z -z * 
2. 4) 

Together with the use of the kinematical relations 

k1.k2 = k3.k4 = - o?(s) - a0 

ki.k4 = k2.k3 = - cz(t) - a0 

kl.k3 = k2.k4 = 4s) + dt) 

we obtain 

(53) 

(54) 

(55) 

k:k 

iazj-zll 
J 1 

= x-+)(+X)-@ft)( Iz -z i 2i b3-z41 /z2-z3/ Iz~-&~~. (56) 
j<l 
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The last factor is cancelled by the measure, leaving us with 

J dzldz3dz4 

(z1-z3)(z3 4 -z lb,-z,) 
Q(arg zI -arg z3) O(arg z3-arg z4) Q(arg z4-arg zi) 

./~xx-l-~S)(i_X)-l-Cl(t). (57) 

0 

Hence all the kinematics are contained in one integrand while a three- 

fold integration separates. Furthermore it can be checked that the 

range of integration of x is from 0 to 1 only because of the O-functions. 

Thus we have 

A4(kl>. . . , k4) = ( /dH) /ix x-‘-~~)(~-X)-~-~~). (58) 

0 
16 

The differential dH is known as the Haar measure. It is an infinite con- 

stant and should be divided out of the amplitude. Calculations performed 

for an arbitrary number of legs show it to be independent of the number 

of external particles. It acquires a certain physical significance when 

one realizes that it is equal to the three-point function between scalar 

particles and could thus be interpreted as a bare coupling constant. 

This interpretation, however, is not consistent with factorization of an 

amplitude with many external particles. 

We should emphasize that the ordering condition is necessary for 

factorization in the sense that it allows for the correct range of x. The 

amplitude (58) factorizes and corresponds to Fig. 2. We should, in 
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order to obtain the full amplitude, add all the inequivalent penetrations 

of the external legs, as shown in Fig. 3. 

When a0 = 1, however, the amplitude we calculate by omitting the 

ordering conditions is automatically equal to the sum of all the inequi- 

valent penetrations. This remarkable property is true independent of 

the number of legs. 
2-l 

We went through this calculational section to acquaint the reader 

with the mathematical techniques used in dual resonance models. 

Although the calculations were performed using the scalar vertex, much 

of the “meat” is the same when considering amplitudes (or equivalently 

vertices) with more complicated external particles. We feel that it is 

always good to give meaning to the abstruse concepts of the previous 

section by showing explicitely how they lead to familiar results. 
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V. GAUGE CONDITIONS 

In constructing the scalar vertrices, it seems that we got more 

than we bargained for. Indeed, using the representation (19) for the 

Virasoro operators (of which the SU(i, 1) generators form a subset), 

we find the following commutation relations 
18 

*n’ VOW z) 1 k2 
z$*nT V,(k;z) (59) 

> 

which means that the scalar vertices are covariant under a much more 

general algebra. The physical meaning of this peculiar equation becomes 

clear in the case a0 = k&/2 = i. We can then rewrite the commutator as 

L1 =I 
L 

4’ vO 
’ (k, z) = -&z& 1 

(uo=l 
z*Vo (k; s) 1 (60) 

remembering that z is on the unit circle, this means that the commutator 

is a perfect differential. In the case co = 1, the amplitude can be 

written as 

where 

AN[k~...~~).<O~i~Z)r*i)IO)“4’(~ki) 
1 

2rr 

J 

dz. a =1 
~[ki) = ~ Vo O (ki, ‘i). 

0 1 

Then, using the periodicity condition, we obtain 

L 
fn’ V(k)] = 0. 

(64) 

(62) 

(63) 
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Since L JO> =O, it’ is clear that the above means that there are 

subsidary conditions between the states appearing in the factorization 

of the model. A quick look back at the explicit representation of the 

Lm Eq. (21) shows that in the rest frame, they relate the “ghost-like” 

mode introduced by (n’ a0 (n = 1,. . . . ) which gives rise to negative norm 

states to other states in the theory. In fact explicit calculations show 

that they act as “ghost compensators ” in such a way that there does not 

seem to be any negative norm state when cr 
0 = 1 although there is a 

tachyon at the nonsense point of the mother trajectory. 
i9 

We note that 

such a tachyon will appear whenever the mother trajectory has positive 

intercept as it does in the real world for the p! We wish to stress that 

although this condition for ghost elimination so far holds only when the 

mother trajectory has unit intercept, the DRM’s are the only model to 

have such a mechanism. Indeed it may be argued that a similar mech- 

anism will always be needed for relativistic theories of strong inter- 

actions where an infinite number of negative norm states will be intro- 

duced by the nature of the Lorentz metric. 

At this stage of our understanding of the dual resonance model, 

it is well to review what we have. First of all, the model we have con- 

sidered has no internal quantum numbers so that we are really dealing 

(at best) with what is hopefully the skeleton of a strong interaction 

theory. The nature of the commutation relations (12a) introduces 

negative norm states which are compensated only when the mother 
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trajectory has unit intercept, thereby introducing a tachyon (which we 

would have had in any case in any channel involving the p trajectory). 

The model has an additional difficulty because the Js of the dual ver- 

tices depends on the mass of the particle; since they have to be the 

same to obtain SU( i,1) invariance, it is not clear how to go off mass 

shell and keep SU(I, i).20 This problem is, of course, acutely felt when 

one wants to introduce electromagnetic interactions. 

Although the above remarks make it clear that the model must be 

improved, we have found a surprising group theoretical structure which 

seems to be at the origin of all the esthetic properties of the model. 

In addition we have found the existence of a gauge-like algebra, which 

seems to eliminate unwanted negative norm states. It is clear then 

that at least one of these features must be kept in devising more physical 

dual models. 

In order to gain more familiarity with the SU( 1,i) aspect of the 

bare model, we will try to build dual vertices for the excited states of 

the theory. Then we will try to add quantum numbers to the bare theory 

and will examine several models that were recently proposed. 
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VI. DUAL VERTICES FOR EXCITED STATES 

We now try to construct dual vertices for the excited particles 

that appear in the bare dual model. We start by constructing the vertex 

for the emission of a vector particle. Recall that Pp is like a generalized 

momentum, which suggests the form 
11 

Vp(k, j-i; z) = e ik.F(z) pp(z, e ik.F(z) 
( 64) 

which is written in a normal ordered form and where we disregard the 

factor e 
-k2/2e 

from now on. Using the representation (18) for the 

generators, we find that 

I Lo, VJk, j-i; z)] = - z -& V&k. i; z) (65a) 

L *t’ ,,,.,:z,] = -$ [ z &* (i+$)] VJk,i:z)+$kpVo(k,z).(65b) 

There are two important things to notice about the last equation. First, 

as written Vp(k. l;z) is not covariant under SU(i, 1) because of the second 

term appearing in Eq. ( 65b) and that this extra term is along kp and 

appears with the same sign for both L, and L-. The only way to get 

rid of this term is to put a spin 1 projection operator! Thus the require- 

ment of covariance under SU( 1,1) forces the addition of the projection 

operator. The dual vertex for a vector meson is then 
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VW&, z) = 
ik.@( z) 

P”(z) eikF(z). (66) 

The second thing to notice is that the Js of this vector dual vertex is 

Js=- ( l+$) ;-( l2$ ), (67) 

Using our criterion (4), this vector meson will interact in a dual way 

with scalars only if 

(68) 

where MS and Mv are the masses of the scalar and the vector particles, 

respectively. This means that our vector meson lies on the first re- 

currence of the mother trajectory. Similarly, we can find the dual vertex 

for a particle of spin two. 

Introduce the notation 

qz,- ( gllv - y ) Pv(z). 

The obvious choice is 

(69) 

Vpv(k, j=2; z) = e 
ikF( z) 

: 5&z) Gv(z) : eik’F(Z). (70) 

Explicit calculation shows that as it stands this vertex transforms covari- 

antly under SU( 1,1) with a dual spin 
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J C2) = - 
S (239 . (71) 

However, before interpreting it as the dual vertex for a spin two par- 

ticle, we must subtract the traces. It turns out that this procedure is 

enforced by requiring’covariance under Lti !!. 
21 

Hence, as hinted at in 

the previous section, the Virasoro operators play the role of projecting 

the vertices into definite spin states. The relation ( 71) shows that the 

spin 2 particle we are talking about lies on the second recurrence of the 

mother trajectory. It is rather straightforward to generalize our pro- 

cedure to take into account all the states on the mother trajectory. 

(See Fig. 4. ) 

It turns out that dual vertices can be written for some of the 

daughter states that appear in the theory, as has been shown by Fubini 

and collaborators. 
22 

This construction is relevant only where the pro - 

pagator is diagonal, i. e. a0 = 1. We just quote the result for the spin 

i daughter which has a dual vertex 

VCt)(k, z) = eik.“” : ( z & + 4k.p) pp + kp { . . . .I : eik.F(z), (72) 
k 

This vertex has JsD = - ( 2 + k2/2) so that it lies under the spin 2 state 

on the mother trajectory. We note, however, that it has a component 

along kP SO that in this case covariance under SU( 1, 1) is not sufficient 

to eliminate this troublesome component. Indeed we need covariance 

under L ~ to handle it satisfactorily. However, the problem is 
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technically very complicated and as of this writing not entirely solved, 

i. e. although one finds all the possible daughter vertrices covariant 

under SU(1,1) it is very hard to separate the correct linear continuation 

which are also covariant under Lk2, although considerable effort in this 

direction has been spent. 

We wish to point out, however, that the spin 1 part of this daughter 

vertex can be rewritten as a perfect differential when (Y 
0 = 1, so that the 

first daughter decouples according to the mechanism outlined in the pre- 

vious section. Actually this phenomenon occurs all along the first 

daughter trajectory when a0 = 1 so that it decouples entirely from the 

problem. This was first pointed out by Di Vecchia and Del Giudice 
i9 

by 

a close analysis of the spectrum. 

The main conclusion of this section is that the dual daughter ver- 

tices for definite spin states have not all been constructed as they must 

be covariant under the Virasoro algebra. 
23 

This problem seems hope- 

lessly complicated at the moment, and we have nothing to add to it; 

rather we turn our attention to the inclusion of internal quantum numbers 

in the bare model. 
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VII. DUAL MODELS WITH ADDITIONAL QUANTUM NUMBERS 

As stated earlier, another direction of research is to incorporate 

additional degrees of freedom into the bare model without upsetting the 

group theoretical properties under at least SU( i,i). In this section we 

describe three such models in their chronological appearance in the 

literature. These are the models proposed by Bardacki-Halpern 24uL 

25 (II) , and Neveu and Schwarz 
26 

Clavelli (III), Their common feature 

is that they start by introducing new operators as coefficients of the 

basis functions of the bounded representation of SU( 1 ,I). They all have 

a G-parity operator and display a spectrum which, although not yet the 

physical one, shows great improvement over that of the bare model. 

The last model (III) has a new feature which is responsible for decoupling 

thetachyon appearing on the mother trajectory although another tachyon 

appears in the model. These statements will be clarified by considering 

the models in detail. 

A, Bardacki -Halpern Model 

The new degrees of freedom are introduced through the quark-like 

operator function 

m 
,@)I -;,m)++ d,‘“)+\-i,m)- r =i,2,3, (73) 

where the notation for the states is that of Section II and the coefficient 

obeys the following anticommutation relations 
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b;m),d;n)] =E;m)t,d;nr] : 0 

[br(n),b;m)t] = 6rs 6nm = b/), d;m)t] (74) r,s = 1,2,3 

m,n = O,l,. 

The point of this construction is that one can define new SU( 1,1) and 

Virasoro operators 

s 2n 
dz -m 
zz : 

0 1 (75) 

such that the quark-like functions 4 
(r) 

transform under these new 

operators with a SU(i,i) spin - i/Z. It follows that, if we define the 

new SU( 1,i) operators as the sum of those appearing in Section II and 

the operators defined by Eq. (75) 

L T=L +L’ 
-m -m -m’ (76) 

then the following vertices transform covariantly under L+mT, LOT: 

(a) a vertex without internal quantum number “Pomeron” vertex 

which is just the scalar vertex of the bare theory 

k2 
Vp(k,z) = VO(k,z) with J ’ = - t s (774 

(b) a vertex representing a quark-like state 

‘(r) 
k2 

‘(k,z) = +(r)(z)Vo(k,z) with JsQ = -& - 2 (77b) 

(c) a meson-like vertex 
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VolM(k,z) = : $+(z) XCy$(z):VO(k,z) with J M = 
k2 

S 
-1 -2 (77C) 

where the Xru are the SU( 3) matrices. 

As implied by the definition (75), the operators L 
T 

-m 
satisfy 

among themselves a Virasoro algebra. In addition, since the above 

quoted vertices are also covariant under the Virasoro operators, there 

is a decoupling scheme at work where Js = -1 which conveniently yields 

a mass zero meson. In this case, the spectrum is shown in Fig. 5. 

The model suffers from certain diseases, namely the lack of half integer 

spaced trajectories, existence of tachyons and exotic “quark” states. 

B. Clavelli Model 

In this case the new degrees of freedom are introduced by a scalar 

(+) function belonging to D J and Di -) with J = - a 

m 

H(z) ~= 
c 

(78) 

m=O 

where 

‘[blml,d(ni] = ptml,dtn)tj = o 

b(m),b(nij = j-f(m’,d’n’t] = 6n,m n,m = o,i,. (79) 

The new SU(I, 1) generators are introduced by sandwiching the repre- 

sentation (5) of the generators between the states H in the same way as 

was done earlier for the bare model. However, it does not seem to 

be possible to build the Virasoro operators. 
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As should be obvious by now, the H(z) transform covariantly under 

1 
these new SU(1,1) operators with JS = - ;i- The dual vertex for a pseudo - 

scalar meson is 

V”(k,z) = : H+(z)H(z):vo(k,Z), 

which has 

1 
1 k2. J~=-F-~ 

There is a G-parity operator 

m 

I 
(,h)t . ,crn) + ,cm)t, btm)) 

m =0 

(80) 

(81) 

(82) 

The obvious choice is to take the dual vertex V”(k,z) to represent 

the pion. Then one fixes Js so that its mass vanishes through Eq. (81). 

The spectrum of states one obtains this way is shown in Fig. 6. It has 

the virtue of having a p trajectory with the correct intercept, i. e. , half 

integer spacing between meson trajectories. Although many particles 

have their correct mass value, (TI, p , Ai ), the model has no room for 

abnormal parity coupling ( o, AZ, ). In addition, negative norm states 

appear on the fifth trajectory. Another model was considered by the 

same author to include SU( 3) breaking by introducing the quark-like 

function 

Or’ m)- + dr(m)Irlr, m)+ r =1,2,3 (83) 
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where the q, act as the breaking parameters. However, the model 

leads to v”q degeneracy 

C, Neveu-Schwarz Model 

The authors consider the function 

co 

HP(z) = 
c 

ccm)+( -t,m)-+cll(m)l -t,m)+ (84) 
tJ 

m=O 

where c,‘“) and cinR are four -vector operators obeying the anticom- 

mutation relations 

p, p) bnm?zpp 

from which one can build the Virasoro operators 

2rr 

L (‘1 = .& 
-m 

1 

dz z-~:H(z) z & 
z 

0 

H(z) : (86) 

(85) 

which obey the usual algebra 

The new operators are the sum, as in the previous models 

L 
T &m(a) +L_nllc). (87) 

-m 

It is no wonder that under these operators, HP(z) transforms covariantly 

with Js = - i/Z. At this point, a new feature of this particular model 

emerges. Since HP is a four vector, it can be coupled to PI*, which 

leads us to consider the operators 
27 

zri 3 
$ z+~H~z)P’(.) ,=*?- *- 

2’ 2”” 
(88) 
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which satisfy 

(89) 

= - 2Ln+mT. (90) 

As we shall see later these new operators act as additional decouplers 

when a 
0 

= 1. The dual pion vertex is 

Vr’(k, z) =k.H(z) Vo(k, z) 
1 k2 

which has J = - T-T, 
S 

which can be rewritten as 

Vn(k,z) = -$ pi, VOW z) 1 
then it follows that 

b+z Vkj = -;I;-+, v$h z;] 
d 

+k 
dz 2 Vo(k, z) 

Since cue = 1, k2/2 = 112 so that in fact we have 

/j+,Vn(k,zj =-6 z$[ztVo(k.Z;] 

(91) 

(92) 

(93a) 

(93b) 

(94) 

We have a perfect differential on the right-hand side of Eq. (94). Such 

a perfect differential eliminates an integration variables in the ampli - 

tude and this eliminates a propagator, thus giving zero for the ampli- 

tude. These are the new gauges introduced by Neveu and Schwarz, and 
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they serve to decouple the tachyon lying on the mother trajectory. More 

detail is to be found in Ref. 26. 

The virtues of this model are quite remarkable since it allows for 

abnormal parity couplings, the first dual factorizable model to do so. 

Also since there are two decoupling schemes at work, it is not likely that 

negative norm states will appear in the model. 

Although the discovery of these new gauges allows for the con- 

struction of a more “real life” model (see Fig. 7), it is clear that one 

28 
still has a long way to go. It should be noted that by adding a fifth mode 

to the Neveu Schwarz model, one can eliminate the tachyon, 
29 

but the 

price is the loss of half integer spacing between meson trajectories and 

an increase in the w-p mass difference. 
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VIII. CONCLUSION 

These lectures have been delivered with the aim of familiarizing 

the reader with what seems to many to be an exotic field of physics; 

we hope they have been successful in this respect. For the sake of 

completeness, however, we should point out the existence of more fun- 

30 
damental approaches to dual theories that have been sparked by Y. Nambu 

31 32 
and H. B Nielsen as well as many other people. The most exciting 

aspect of these works is the understanding of the Virasoro algebra as a 

33 
gauge group, not unlike that found in general relativity. There is 

34 
little doubt that if duality has anything to do with strong interactions, 

these can be considered as the strong gauges, pretty much on the same 

footing as the electromagnetic gauge for electromagnetic interactions, 

In summary we can say that we are at the beginning of an under - 

standing of duality in terms of strong interactions and that the theories 

we discussed are necessarily very elementary, but there are group 

theoretical concepts that seem to transcend any given dual model-- 

when we understand their origin we shall undoubtedly be able to build 

more satisfactory (in the sense that they reproduce the observed spec - 

trum) dual models. 
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FIGURE CAPTIONS 

Fig. 1. Dual N-point factorizable amplitude. 

Fig. 2. Four point amplitude. 

Fig. 3. Total dual amplitude for four external scalars. 

Fig. 4. Particle spectrum in the a0 = 1 case of the bare dual model. 

The dotted line means that the particles lying on it are decoupled 

from the rest. 

Fig. 5. Particle spectrum in the Bardacki -Halpern model. 

Fig. 6. Particle spectrum in the Clavelli model. 

Fig. 7. Particle spectrum in the Neveu-Schwarz model. 
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