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ABSTRACT 

The Veneziano Beta function transform technique is generalized to 

the case in which there are several asymptotic variables. The multiple 

transform of a dual tree amplitude is found to be again a dual tree amplitude 

apart from a well defined redefinition of the trajectories. The asymptotic 

behavior of dual amplitudes are discussed, with particular emphasis on the 

analytic structure in the complex angular momentum-like plane. 
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I. INTRODUCTION 

Recently there has appeared a number of fascinating experimental 

predictions resulting from the high energy behavior of dual resonance 

1,2,3,4,5,6 amplitudes . Some of these results are remarkably similar 

7,8,9 (in some cases identical) to those obtained from general arguments 

based on analyticity requirements in the complex angular momentum and 

helicity planes. 

The asymptotic behavior of the dual amplitudes have for the most 

mrt been investigated by means of either steepest descent methods,’ 

Mellin transforms, 
10 11 

or a variety of exponentiation procedures. 

A simple and direct approach to asymptopia which provides contact with 

analyticity in the J-plane and is somehow natural for the dual amplitudes 

should be useful. Such an approach was proposed and applied two years 

12 
ago by Veneziano in the study of the J-plane structure of the four-point 

function. Here we shall generalize his method to the situation where there 

are several asymptotic variables. We shall illustrate the method by 

applying it to high-energy limits of dual tree graphs recovering of course 

previous results, but in addition noting some new unsuspected features of 

the dual amplitudes. In particular we find: (1) That it is no more difficult 

to compute a high energy limit in the multi-peripheral configuration than 

any other. (2) We have examined the double Regge Vertex in the case where 

the Reggeons have intercepted unity. We find that the unsignatured vertex 

vanishes when both momentum transfers tend to zero. 
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This result is quite analogous to that already obtained 2,3,4 
for the 

triple Regge vertex involving three [ 11 
“Pomerons”. 

We hope this new line of work will be helpful in comparing asymptotic 

results from dual amplitudes with those obtained from general analyticity 

requirements. 

II. THE VENEZIANO TRANSFORM 

The most convenient variable in which to study the analytic structure 

of the dual amplitude in the J-plane is not necessarily J itself. Here 

we use the variable r, which is associated with the Veneziano transform. 
12,13 

T”y$) 3(-Z, -4) 

(2. 1) 

(0 <El.\) 

‘;li ‘p& ‘) ^j, L, 

\ 

Ad, V”‘( &J, >o g, (-r+ 1, Js+.” \ 
(2. 2) 

2Vl 

- ?j-;ca 

( L’ L. “ii i. i ) , 



-4- THY - 10 

B denotes the Euler beta function, and (Ye = (Y~ + cy*s the linear s-channel 

parent trajectory with slope CY’ , which for convenience we set to one. 

X indicates collectively the remaining variables. 

If we chose for V(G~, X) the usual s-t Veneziano four-point function, 

equation (2. i) would be the analogue of the Sommerfeld-Watson transform, 

and V(-,,X) the analytically continued t-channel partial wave amplitude. 

It is the analytical structure of V(T,X) which is central to Regge Pole 

theory - thus for example the leading singularities of r, as we shall see, 

govern the asymptotic behavior when as, the transformed variable, 

becomes large. 

We define a multiple transform with respect to n-variables which will 

eventually become asymptotic: 

% ’ - 5 , + ; t.x.2 

s,]‘-*.! d ,,,‘,%)=(+~;j” AT,,, -” -j- J dT, ’ 

(2. 3) 
-g,-;- -E,-i=+ 

r--’ (f+-) 
.v ( -r , ) I > ’ , r,, ; x ) -5 ( -7 ( , ..- x’s ( ) ’ ’ ’ p: C-T,. :,, -43, ) 

(0 (fl(’ , 
; :z l,., ‘,I 4 
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-yn+;-Q -r),+ ; cm-a 

i i 
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I 

Before proceeding to the case of interest, i. e. , when V (n) is a dual 

amplitude, we quote an important result of Ademollo and Del Giudice. 
13 

If, 
I 

then, 

V 
t 1) 

( I, ; ,% J = \ *I ‘1 - “i,-’ ’ c ( “j ,,“i ) 
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(2. 5) 
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Here f(y,X) is not an explicit function of as. 

We write the dual amplitude V (n’ as: 

V’id,;) !I’) d,, ’ 4% ‘/ x > = 
I 

' TT 
it 

-di-1 

i Ti ' 

(2. 7) 



-6- THY - 10 

14 
where u. . . . u. are the Chan variables associated with channel 

li 1 n 
variables which will eventually become asymptotic,~ a. 

are the remaining 
J 

Chan variables, X the fixed channel variables and dZ) is the cyclic 

symmetric volume element. Finally we recall the duality constraint 

equations requires 
,; \ 

“j =\- ;i, u-AL (2. 8) 

where uf: are all the Chan variables dual to uj. 

Inserting Eq. (2. 7) into Eq. (2.4) and using repeatedly Eq. (2.6) we 

obtain: 

7 Ixl)(TA. ,‘.‘, Td, ‘,“) = dd +; 
- 4’- 3 ’ 

11 Lr\ i ‘1 (2.9) 

where uj are the usual Chan variables, however, the Regge trajectories 

are modified according to: 

.th a. = 0. if the J channel is not dual to channels i 
J J 

i,...in 

nor identical to any of the transformed channels. 

, where the summation over T 1s are 

associated with~~channels that are dual to j, and j is (2. ie) 

not a transformed channel. 

fi where againthe summation over -r extends 

dual to j associated with t 
a: 

apart from j 

itself which is now associated with one of the ‘k TV. . . . .t@. . 

9 1 
If the sum is empty - we replace it by zero. n 
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We see from Eq. (2. 9) the pleasant feature that the transformed 

dual amplitude is again a dual amplitude with modified Regge trajectories 

given by a simple rule, Eq. (2. 10). 

Finally to extract the asymptotic limit we insert Eq. (2. 9) into 

Eq. (2. 10) and as usual let -(Y s, (i= 1, . . . n) approach infinity along 
1 

a ray in the complex CY s. plane. If we desire the leading asymptotic 
1 

behavior we rewrite Eq. (2. 3) as: 

L\ /p)(< 

-d-->-o 
S,‘, ) ’ 1 

pj (ui -i, 

#V (T;,,, 'TLm, ; x 'I, (-"'s; 
-G* 

, 
) Y . . I-+( ) : 

u 

’ 1’. c, - .fz ;, ) ’ ’ * I--” (- T& ‘, , ID CE,; 4 I i ic I,Fa-, * ) 
and study the singularity structure of the integrand. Eq. (2. 11) is the 

analogue of the multiple Somme rfeld-Watson transform. 

At present we have not been specific with regard to the collective 

variable X, nor the particular channel in which we expect Regge-like 

singularities. 

It appears to us that a simple rule leads quickly to the desired 

leading asymptotic results for a large class of high energy limits. 
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The rule. We require among the independent Chan variables those 

which correspond to channels whose corresponding Regge singularities 

we desire. We call these the chosen variables. This is of course 

dictated by the particular asymptotic limit. [ 21 We then send the choosen 

variables to zero thus exposing the anticipated singularities. (All 

variables dual to the chosen variables tend to one). 

We find that this rule does lead to previous results, however we 

caution the reader that we have not yet taken proper care of signature 

factors. These arise from treating definite inequivalent permutation of 

[3 1 
the dual amplitudes, and assigning suitable phases to these amplitudes. 

Thus at times one might find spurious poles in our amplitudes - which 

necessitate a more thorough analysis with regard to the proper inclusion 

of signature, before ascribing any special physical significance to them. 

thus it is perhaps more reasonable to define in the first place 

a signatured multiple-transform. We hope to return to this question 

in a future note. We shall touch on this point briefly when we discuss 

the double Regge rrrtex.. 

We illustrate the multiple Veneziano transform technique by 

considering: (1) the double Regge limit for the five-point function, 

(2) the triple and~double Regge limit ofithe six-point function in the 

multiperipheral-and semi-multiperipheral configuration respectively. 
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For the latter the kinematics are appropriate for the pionization limit 

of the single particle distribution. 

III. APPLICATIONS 

Before proceeding we list here three basic relations which will 

be used repeatedly: 15 

As /5 y--(--S’, r 

‘d-;w3 

-(acs\ I;- 

7 

‘( a-c, +\ i-5 
\ 

‘= 

(3.1) 

x ct j- ( c~ ‘j reb’ ( fi -- L 3 I ) Y ( a , c, ; g ) 

(, - Ke CL ( Y (4ww.x. (c)] l- Rec.), - T <yx <y, ) 
4 ( -4 

I 
\ 
di T’(y .vc(‘: r(2tpj rd-2) rw2.b (3. 2) 

7 rl L 
( :* 

s-( o( c 5 ) I-- ( 8 t p 1 13 c x i- a’/ (3 -t s ) 

( Re d, ‘p.e p ) 17e 1’ ) Ye 5 >u ) 
(3. 3) 

v ‘(2 ) = 1-q ( I + 2 ) “. -$ 
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~(a, c, x) is the confluent hypergeometric function B is the Euler beta 

function, and L/J(Z) is the logarithmic derivative of I?(z). 

The Five -Point Function 

We compute the double Regge limit of the five-point amplitude. 

All external particles considered in this paper are taken to be identical 

I = 0 scalar particles. (See Fig. ia). 

The three asymptotic variables are: 

S DL( = 
(3.4) 

SL3 = (p7~+Px 

we take the limit such that (-ao4), (-‘Yap), and (-‘Yap) become infinite 

whereas the ratio 

K =, C-d,, ‘\ (- cd!,.3 ‘, 
olt -______.- “.~, _“,,,“,..*.,-~ 

(- J(OLf ) 

(3.5) 

and ai and (Y 34 are kept fixed. Here @i. and cu34 are the linear trajectories 

associated with the channel energies: 

QL7 -tPIY- 
‘a- 

s = 0, c 
J .J 3 Li 

= i 21”,.$ -+ ‘fY \ 

(3.6) 
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For later use we record the linear relation between the cosine of Toller 

angle, o , and s 04/(s12)b23): 

s,q = 
,si-L 52% ,.,---~.- .__ -._._... _-__L --.. ---_..-- 

x (‘O, J &+)--d,\) 

where 
(3. 7) 

Using Eq. (2. 9) and (2. 10) we obtain for the triply transformed 

amplitude: 

ij;l’:: (43 , .42.) d,3 ;I d,, , d,q ) = 

i 

&) u, ,- d., .* T,., i-7:,,-’ f --dTq I-T,., +I-~“~ -/ (3.8) 

b3Li 

-tl~3 
7- -’ ,?. 0 

Ull K, 2 3 U I2 .-, I 

We remark that it is quite simple to read off this result from the dual 

diagram. (See Fig. Ib). We have indicated by the solid line the 

asymptotic channels. We have also indicated by a dotted line a particular 

channel, (34). We note that the dotted line crosses channels (04) and (23). 

Thus the exponent of u34 must be shifted by a positive amount, 704 + 723. 

Similarly for u. 1. The asymptotic channel (04) has no asymptotic 

line crossing it, hence the exponent zero. Channels (23) and (12) are asymptotic 
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thus we deleted the exponents -LY f2-1, and -u23 -1, and replace them 

by the exponents ~~~ and ~~~ respectively, since (23) crosses (12) and 

(12) crosses (23). 

Clearly we are interested in the singularities in the channels (01) 

and (34) hence we choose u 
01 and u 

34 as independent Chan variables, 

and obtain using Eq. (2. 11): 

4 -c o q d *i:: ;f. .<, d-zr, z ~4 4 

.-de, -+-coy + r ,z cj I -$,* + ?zb.( +“cP1,- 1 
U et L(. 3 ‘f 

T F7 21 IL 
LA LL u as &- do q pq. (-cd,,. ) 

’ ~-‘pLjq ) i--(--T,.. ‘s I--- t--T,3 ), 

We perform first the T 1 2 integration. The leading singularity to the 

left of our contour is the pole located at: 

z- I2 -” d,, -. z,, 
(3. 40) 

which occurs when u o1 tends to zero. It’s residue is 

L,:., ls(” I= d TljJ :ja y-,?,, d J k,; “‘l’ “’ ‘T’3-1 - J-.‘,.-d i (3.11) 

’ u dor- ‘e-e.q 23 i-(L- d,, \ j--p- L., ) T--(-T,71 j, 

d /-,“,JD’ ( g;;.. ) To.i I-- d,, ) y 
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Similarly one does the rZ3 integration and obtains: 

j&i/, g3 \ y 
- d-,h.Q -. s- 

J-; i-d”’ (- dz3 p \ C’L.j 

--i-c,4 
(3. 12) 

(-A,s \ I- d?,2, \ 
_w.-~ 

‘7 

_..,.l,.l. _ . . _ ,...I.. * r”- (-Jo, +-?@.A ) r-(-A,, -t TcY ) l-(-T..,) 

We recognize the integral expression in Eq. (3.12) as related to the 

integral representation of the confluent hypergeometric Q, function. 

Using Eq. (3. 1) and (3. 5) we obtain: 

,L~,;%~,~ -j$ = (- d,I jd’ ’ (- d21 ) “’ r- I-~,,, , 1 j-(-d3 LJ j 1 
-d->- (3.13) 

--goill ‘L’ 

’ k, 
kc 

-d 
CL , 3(3y -4, -kI, tcoq 

1 

We stress that Eq. (3.1%) is valid only in the limit where a34 # ao1. 

As we see, from the integrand of Eq. (3.12), when a34 = (rot we have a 

sequence of double poles arising from the factor I?‘(-crol + Tag). [41 We 

shall return to this important limit after we demonstrate by means of 

our transform technique, the “factorizability” of the double Regge vertex. 

The Six-Point Function, Multiperipheral Configuration 

We first compute the triple Regge limit of the six-point amplitude 

in the multi-peripheral configuration, (see Fig. 2a). 

The six asymptotic variables are: 

5 OS- = (j’<,t(‘5)z, SIS f [p,+ yap, 5,,l;= i\Lpy.,)= (3 14) 

8 34 -I ( fz,-t py )J s,, - (P,+ r?*y& s,,,, ‘” i p2,.+ p.s .4 py y- 
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We take the limit where -a05 , -p12’ -‘~23, -a34 -a13, -cu24 become 

infinite whereas the ratios, 

K,= 
(--‘4,x ‘, j-d,, ) I-41, ‘, i- d,r \ 

, t(,=. _-.., 

C--d,-, \ f-d=, ) 
(3.15) 

K 3 ‘I- 
I-J,,, )l-4, ,.,,* j (- d,.. ) 

__._.__. _.,. “,., ,..,._.. - ~.,..I 
C-d,>- ) 

16 are kept fixed. Furthermore we make use of a factorization condition 

K-32 K, K-L (3. 16) 

Again one easily obtains the transformed amplitude using Eq. (2. 9) 

and (2. 10): 

\ 
‘g ‘t’ = ( J,,,\,J A-I;,- dw + ‘co, -t r,?x -t-r 11.. -. , 

AVL +T,.: tT;3*TL-:*-( - do-4 -fro5 tT,4f +q&,-l (3*i7) 

’ b,, Me3 

We have choosen uol, uo2, uo3, as the appropriate independent Ghan 

invariables. u denotes the remaining Ghan variables, and f(uO) is a 
(Y 

function which of course te.nds to unity as the three chosen 

variables approach zero. 

Applying the multiple transform, Eq. (2. iI), we find upon sending uo1,uo2, 
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and u o3 to zero and picking up the residues of the leading singularities 

in the T 
12’ 723’ and T 

34 
complex planes we are left with: 

T’, s -- T 13--7’24 

l riruIi +T,,- d,, j m,, +rTr3 *TV., -brij I 
rh,, + T',, -'. do.?, 1 (- d,, j teq (-, +,, 1 tl.A~ I- d,& j? 

4 i-- (-r:.c ) I-- t-t!, ) r” (- Cl.&, ‘1 , 

Changing variables such that: 

X= T,q “r-e ,3 
) ‘a 

= T-0, t t, ‘1 
(3.19) 

ZL p T, ‘; +” T , 5 ‘I- T % L, , 

We have using, Eq, (3. 16): > 
/I":\,‘b -. :$ -,*q n ': \ ; (- &jdD' (- d,~?) dd1 (- d3.l > -1 

3 
Ii' lf ---l ddy A%. J--(x -‘z!,) ny -A-d, ) 271 (3. 20) 

1-i + *, J,: ~, ) I- j J - ? ‘1 l-7 ‘1 - -2 J 
p- ( z- _. ,+ .*. 7 ) 

t kc; 9 g, 
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We may now easily perform the z integration using Eq. (3. 2) and obtain: 

LL..L By’ = (-&p (-d,,)dbL (-.&-( p: 1 
-(g-,.-J 

* I-- - ‘( - d,,, ) -;i;; j---(-i) \-(%-d,,* 1 r(<-s/,, ), (3.21) 

Ii.7 I-Yy -doz) i- l’y-&) C,?dy 

Using Eq. (3. 1) we have: 

I- ,, igy :. (+f’ (- d,, f- (-d3.+ )? 

-d-x- 

I j-- (-do,) v (d,,) A,%. / K, ) r-I-+J ’ 
(3. 22) 

where 

This result is manifestly factorizable in the sense defined by Bardacki 

11 
and Ruegg and of course identical with their result. We note again that 

Eq. (3. 22) is valid only in the limit in which the momentum transfer 

czoi’ @ “1 + 1 
are unequal. 

The Double Regge Vertex When crizoi + *. 

We see from the previous analysis that the occurrence of double poles 

when aoi = (Y . 
01 + 1 

in the intergrands of Eq. (3. 21) requires special attention. 

From Eq. (3. 23) we realize that this is equivalent to the classical problem 

of defining the *-(a, b,x ) function interms of the @ function when the argument 

b is a positive integer. 
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We quote the results of 
15 

of that analysis: 

&. 

ci,;--4i+i 

v’ (do; ,(*i,,?( ) K: ~ = *-;“Oigk ~ 

oi 
I 

6 
T 

,.~i (-do; i 1, K; ) ty K; -+ +,~. 
- bL 1 

2 r(--&i +q ’ 

rzc (3. 24) 

v 7 

(3.25) 

where L/J(Z) is the logarithmic derivative of r(z) and @ (a, b, X) is defined 

by the confluent hypergeometric series: 

3 

&(/a+1 
-\ (a,L,i) = 1-t $- x -F 1 %2 y- 

h-1’ \ l’, 

3. &(a-+, )(A ,t 2~\ x3 
-t- I, I LI-.~... 

b(b-+l) f&+7-\ ‘j! 

It is amusing to observe the behavior of Eq. (3. 24) for the case in 

which all Regge intercepts are taken to unity i. e. , 

c(t 7 
OL J-t- so: , do;,, = It s,;,, 

(3. 26) 

and the momentum transfer soi and soi + 1 approach zero. We have: 

G \l(&,; jdo;4,1K;) =-~? (3.27) 

d 0; +3(,;+ I 
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Here we have used repeatedly Eq. (3. 3). Finally we note the 

kinematical constraint Eq. ( 3. 7): 

C-W- I<, = \ 

do;=do;+l L 

A,; --3 1 

Hence, 

(3. 28) 

(3. 29) 

If we identify the trajectories cuoi, and aoi + 1 with the Pomeranchuk, 

(hereit is in fact an I = 0 even signature trajectory) we appear to resolve [ 51 

17 
the Finkelstein Kajantie paradox concerning multiple Pomeranchuk 

exchange. Such a resolution was proposed some time ago by Verdiev, 

18 
Kancheli, Matinyan, Popova and Ter-Martirosyan . 

Before concluding that this result would remain for the physical 

amplitude one m&t first properly include the signature factor. 

One might naively expect the usual multiplicative factor, 

( 1 + emirraoi). (1 + emira oi + I), which produce the proper non-sense 

correct signature decoupling, and do not modify our result. However, 

Drummond, Landshoff, and zakrzewski 19 
argue in a somewhat model 

independent way that the physical double-Regge Vertex involves both the 

expected modification but in addition a remainder which is related to a 

definite discontinuity of the vertex in the complex K - plane. 
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The effect of this addition is to alter radically the physical vertex at 

wrong signature points. In their analysis they have neglected a class 

of diagrams which appear to contribute to a quite different asymptotic 

limit (e.g. , that in which lines 1 and 2 are interchanged in the 

five-point function). It appears to us that this class of diagrams may 

in fact play an important role both with regard to signature and the 

appearance of double poles. 

Six-Point Function, Semi-Multiperipheral Configuration 

We next examine the six-point function in the kinematical configuration 

appropriate for the pionization limit of the single particle distribution. 

(See Fig. 3a). 

We define the kinematic variables: 

S &‘,= (p,-p,: 1” , Sbh,T (ph-Ph,)L , Ati= hwb-d 

~2. 
s,, = (pa- pJL s,,,, = (p<“-~l’,’ J , y,($= ip&-qJ t3a30) 

5 ,‘h’= ( fJb’- fJ- , c fc * 

We consider the high energy limit in which -aNI, -ffal, -aa, 1. 8 

and -(Y bl’ -@b,l,” approach infinity, yet keeping the ratios 

kT (-dd’l’ -dnt 
-___.. 7 - “bl 

-3 / ...~,~.,_ (3.31) -.---.- ___._., . . . . . ._,.,. 

(-JtA 1 

fixed. 
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As before it is straight forward to obtain the multiple transform: 

TL/ 5 i’ 
E. 5 

b I 

- 4&fil,'t. 70, *TM+- Tb'/'- 1 
/ lL b&i 1' 

--'"sb'/J -+rb,+ r,,4+Td/,, - / 

%bI/' 

’ ahl: f i:i(titi;\ , 
(3. 32) 

We choose u aa” %,,” anduaaals as independent variables. 

Applying the multiple transform, we find upon sending u 
aa’ and u 

bb’ to 

zero and picking up the residues of the leading singularities in the 

r a/l/ and 7b/l, complex planes we obtain: 

-& -ypq. (-& y 1 AT, ) &J i’ b , c! ‘7 ~c” &4 ?I ’ 
6 

(3. 33) 

,, r ( -7 & , 4 4 r-” - d # <, 8 ) f” (T,, “t T, - 41,’ ) 

’ j- (-- S,~ ) r-t-r,, ) f- I- TAG, ) ’ 

rr, ’ (- d,, ) T~b1 (- dh, ) Z-br (-dk j ’ 
-4 6,61/l + T,,,- T,, -f dbi>i - c -_. o(,,~)iiI-! r,,*~, T,, + d,G’- 1 , 

U40i/t AiJ,j/, - 
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Recognizing that the remain Chan variables integrate to the Beta 

function and using Eq. (3.31) and Eq. (3.2) twice we obtain: 

,,n.,:,-\ pf i = 

- .3(-b c-0 L 

-~ d 
tY A.&‘l’ -’ (,- (* )- 4bb’i’ - ’ ( ,“.r”,y &b’,J 

(‘“Mr.3 )(wL\,4. J 

-Lti 
(3. 34) 

, 

Using Eqs. (3. 1) and (3. 31) we have: 

d,, i 
( - d{>'!' 1, db Y 

- d -) be. 
1 I 

, f--y. J,,,, ) j-y. d,,,, ’ 
) I 

&!A LL- y- 
I, 

, (/- *- j- dhb’/’ -,’ v k ) ‘$,I ) $t...&,) ) 
(3,351 

which agrees with that of Refs. 3 and 4. 

Finally we note that in the physical limit in which the trajectories 

functions cy aa’ abb ’ 
are identical we must use Eq. (3. 24)for V. 
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IV. CONCLUSION 

As we have seen the multiple transform technique permits a rather 

careful examination of the J-plane singularity structure of the dual -tree 

amplitudes. We have discussed briefly the standard Regge limits. 

However, it appears to us that these limits are quite interlocked with 

certain fixed angle limits. 
20 

We believe the transformed technique can 

also be of use in evaluating these limits. 

Although we have only considered the leading singularities, we believe 

it is not an impossible problem to probe the lower lying trajectories and 

21 
reinvestigate the interesting factorization questions which arise. Furthermore 

it might prove of interest to study the high energy effects of trajectories 

with non zero Toller quantum numbers, 
21 

which are of course present at the 

daughter level. 

22’ 23’ 5can also be Finally we should mention that the dual loop amplitudes 

subjected to multiple transform techniques. We have verified this for the 

22 
planar single loop amplitudes. Their transforms are again the planar 

loop with shifts in the Regge trajectories analogous to Eq. (2. 10) 

We suspect that this pleasant feature will be maintained for all dual loop 

amplitudes. 
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I 11 We note that the vanishing of the triple Regge vertex occurs when the 

intercepts of the three parent trajectories are at unity, and all momentum 

transfer variables tend to zero, see for example Eq. (3. 22) of Ref. 2. 

[ 21 The collective variable X denotes those channel variables which are held 

fixed. Of course depending on the asymptotic limit there may emerge 

definite ratio’s of asymptotic variables which are kept fixed. 

[ 31 For an interesting general discussion of the non-trivial relations which 

hold between different inequivalent permutations of a dual amplitudes, 

see E. Plahte, Nuovo Cimentox, 713 (1970). A beautiful application 

of the Plahte relations in the context of inclusive reactions may be found 

in Ref. 4. 

[ 41 The presence of double poles when (y34 = (uol, in the double Regge limit 

of the five-point production amplitude had been noted in a model calculation 

involving sums of ladder graphs by W. J. Zakrzewski, Nuovo Cimento, 

E, 263 (1969). 

[ 51 We note that for unit intercept the dual amplitudes are quite likely free of 

ghosts (M.A. Virasoro, Phys. Rev. x, 2933 (1970)). 

It is intriguing that a possible threat to unitarity appears suppressed in 

exactly the Virasoro case. We note, however, that we still have a 

problem due to the presence of the undesirable Tachyon pole. 
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FIGURE CAPTIONS 
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Fig. 1 a) Five-point function, 

b) Dual diagram for five-point function. The solid internal lines 

indicates the asymptotic channels. The dashed interior line indicates a 

particular fixed energy channel. (34). 

Fig. 2 a) The six-point function in the multiperipheral configuration. 

b) The dual diagram for the six-point function. The solid interior 

lines indicate the asymptotic channels. 

Fig. 3. a) The six-point function in the semi-multiperipheral configuration. 

b) The dual diagram for the six-point function. The solid interior 

lines indicate the asymptotic channels. 
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