NEW DUAL N POINT FUNCTIONS

L. Clavelli
National Accelerator Laboratory
Batavia, Illinois 60510

January 4, 1971

Abstract

As an example of the group theoretical approach to the construction of new dual amplitudes we discuss a model pion N point function in which the π trajectory lies $1 / 2$ unit below the leading (ρ) trajectory. The model is completely factorizable, contains a natural G parity and obeys the Adler condition approximately. The degeneracy of the spectrum and the ghost problem is essentially the same as in the conventional Veneziano N point function. In a separate section we discuss a dual interaction of an $\operatorname{SU}(3)$ nonet of scalar mesons with mass splitting.

I. INT RODUCTION

Recently, by abstracting the symmetry of the Veneziano N point function, a general group theoretical prescription for factorizable dual amplitudes has been given ${ }^{1}$, opening the way for the construction of a wide variety of new dual amplitudes some of which will hopefully be closer to nature than the conventional multi-Veneziano expression. As an example of this technique, we propose in Section II a model pion N point function incorporating the ρ trajectory, G parity, and the Adler condition approximately. We note here that pion N point functions based on a generalization ${ }^{2}$ of the Lovelace amplitude ${ }^{3}$ or on a relativistic quark model ${ }^{4}$ are not dual in the group theoretic sense since the cyclic symmetry is put in by hand. Since it contains all the diseases of the conventional amplitude, the major interest in the present model is the example it provides of one dual vertex carrying two trajectories. In addition to the πA_{1} trajectory containing the external particles, there is a leading trajectory one half unit higher containing the ρ, and f. States on the parent πA_{1} trajectory have negative G parity and are decoupled from even numbers of pions. In Section III we discuss a model for the N point function of a nonet of scalar mesons with $\mathrm{SU}(3)$ mass splittings. The model contains a leading trajectory a variable distance above the scalar meson trajectory.

For completeness we summarize here the basic rules for a factorizable, dual amplitude given in Ref. 1. In terms of suitable creation and destruction operators one constructs a representation of the $S U(1,1)$ generators $L_{o}, L_{ \pm}$and a vertex operator $V(z), z$ on the unit circle, transforming under the $\mathrm{SU}(1,1)$ as some spin J_{S} representation. That is

$$
\begin{gather*}
{\left[L_{o}, L_{ \pm}\right]= \pm L_{ \pm}} \tag{1.1}\\
{\left[L_{+}, L_{-}\right]=-L_{o}} \tag{1.2}\\
{\left[L_{o}, V(z)\right]=-z \frac{d}{d z} V(z)} \tag{1.3}\\
{\left[L_{ \pm}, V(z)\right]=-\frac{z^{ \pm 1}}{\sqrt{2}}\left(z \frac{d}{d z} \mp J_{S}\right) V(z)} \tag{1.4}
\end{gather*}
$$

$V(z)$ represents the vertex for the absorption of a particle and may depend on all of the quantum numbers of that particle, and in particular on its four momentum k_{μ}. The significance of J_{S} as the $S U(1,1)$ spin of the particle is clear since if we define the Casimir operator

$$
\begin{equation*}
L^{2}=L_{0}^{2}-L_{+} L_{-}-L_{-} L_{+} \tag{1.5}
\end{equation*}
$$

then u sing 1.3 and 1.4

$$
\begin{equation*}
\mathrm{L}^{2} \mathrm{~V}(\mathrm{z})\left|0>=\mathrm{J}_{\mathrm{s}}\left(\mathrm{~J}_{\mathrm{S}}+1\right) \mathrm{V}(\mathrm{z})\right| 0> \tag{1.6}
\end{equation*}
$$

If one has N such vertices for the absorption of N (in general different) particles each of which transforms with the same $\operatorname{SU}(1,1)$ spin J_{S}, a factorizable, dual N point function is

$$
\begin{equation*}
A_{N}=\frac{1}{C} \oint<0\left|\prod_{i=1}^{N}\left\{\frac{d z_{i}}{z_{i}}\left|z_{i}-z_{i+1}\right|^{-1-J}{ }_{\theta} \theta\left(\arg z_{i}-\arg z_{i+1}\right) V_{i}\left(k_{i} z_{i}\right)\right\}\right| 0> \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
C=\oint \frac{d z d z^{\prime} d z{ }^{\prime \prime} \theta(\arg z-\arg z) \theta\left(\arg z^{\prime}{ }_{z}^{\prime \prime}-\arg z^{\prime \prime}\right)}{\left|z-z^{\prime}\right|\left|z^{\prime}-z^{\prime}\right|\left|z^{\prime}-z\right|} \tag{1.8}
\end{equation*}
$$

The contours are all taken around the unit circle and the z^{\prime} s are defined cyclically, $z_{N+1} \equiv z_{1}$.

The conventional multi Veneziano amplitude employs an infinite set of boson creation and destruction operators ${ }^{5}$ satisfying

$$
\begin{equation*}
\left[\mathrm{a}_{\mu}^{\mathrm{n}}, \mathrm{a}_{v}^{\mathrm{m}}{ }^{\dagger}\right]=\delta_{\mathrm{mn}} \mathrm{~g}_{\mu v} \tag{1.9}
\end{equation*}
$$

with metric $g_{\mu \nu}=(1,1,1,-1)$.
Under the $\mathrm{SU}(1,1)$ algebra generated by

$$
\begin{gather*}
L_{o}=\sum_{m=0}^{\infty}\left(m+\frac{\epsilon}{2}\right) a^{m^{\dagger}} a^{m} \\
L_{+}=\sum_{m=0}^{\infty}\left[\frac{(m+\epsilon)(m+1)}{\sqrt{2}}\right]^{1 / 2} a^{m+1} a^{\dagger} m \tag{1.10}\\
L_{-}=L_{+}^{\dagger}
\end{gather*}
$$

the operator

$$
\begin{equation*}
\left.\left.Q_{\mu}(z)=\sum_{m=0}^{\infty}\left[\frac{(m-1+\epsilon)!}{m!}\right]^{1 / 2} \right\rvert\, a_{\mu}^{m} z^{m+\epsilon / 2}+a_{\mu}^{m^{\dagger}} z^{-m-\epsilon / 2}\right) \tag{1.11}
\end{equation*}
$$

transforms effectively as an $S U(1.1)$ scalar in the limit $\epsilon \rightarrow 0$. In that limit the operator

$$
\begin{equation*}
V(k, z)=: e^{i k \cdot Q(z)}: \tag{1.12}
\end{equation*}
$$

transforms with ${ }^{6,7} \mathrm{~J}_{\mathrm{s}}=-\frac{\mathrm{k}^{2}}{2}=-\alpha_{0}$.
Taking Eq. 1.12 to represent the vertex for the absorption of a scalar meson of momentum k_{μ} and substituting into Eq. 1.5 with $\mathrm{J}_{\mathrm{s}}=-\alpha_{\mathrm{o}}$, one obtains the usual N point function in Koba-Nielsen form. It is interesting to note that the two points of special simplicity in the model $\alpha_{0}=0$ and $\alpha_{0}=1$ are the null points of the Casimir operator Eq. 1.6.

Because of the projective invariance, one can in general reduce Eq. 1.5 to the explicity factorized form by the Fubini Veneziano technique ${ }^{6}$. Define the ground state bra and ket.

$$
\begin{align*}
& \left|k_{n}>=\lim _{z_{n} \infty} z_{n}^{-J} V\left(k_{n}, z_{n}\right)\right| 0> \tag{1.13}\\
& <k_{1}\left|=\lim _{z_{1} \rightarrow 0} z_{1}^{J_{S}}<0\right| V\left(k_{1} z_{1}\right) \tag{1.14}
\end{align*}
$$

Then

$$
\begin{equation*}
A_{n}=\left\langle k_{1}\right| V\left(k_{2}, 1\right) \prod_{i=1}^{n-3}\left[\Delta_{i}\left(L_{o}\right) V\left(k_{i+2}, 1\right)\right]\left|k_{n}\right\rangle \tag{1.15}
\end{equation*}
$$

where the propagator is given by

$$
\begin{equation*}
\Delta_{i}\left(L_{o}\right)=\int_{o}^{1} d x_{i} x_{i}^{-1+L_{o}+J_{S}}(1-x)^{-1-J_{S}} \tag{1.16}
\end{equation*}
$$

In the multi Veneziano amplitude the external particle lies on the leading trajectory. We now proceed to discuss a generalization in which the external particle lies $1 / 2$ unit below the leading trajectory. Such a configuration is close to the physical situation in which the π trajectory is $1 / 2$ unit below the ρ trajectory. We will allow in Section II the incorporation of the Chan Paton ${ }^{8}$ isospin factors to be understood although we will
not discuss them explicitly.

II Pion N Point Function

We would now like to consider a model for the pion N point function which includes the πA_{1} and ρ, and f trajectories. To this end we introduce two infinite sets of spinless Fermi operators satisfying the anti commutation relations

$$
\begin{gather*}
\left\{b^{m}, b^{n^{\dagger}}\right\}=\left\{d^{m}, d^{n \dagger}\right\}=\delta m n \\
\left\{b^{m}, b^{n}\right\}=\left\{b^{m}, d^{n}\right\}=\left\{d^{m}, d^{n}\right\}=\left\{b^{m}, d^{n \dagger}\right\}=0 \tag{2.1}
\end{gather*}
$$

and commuting with the $a^{3} S$ of Eq.1.9. We construct the following $\operatorname{SU}(1,1)$ generators

$$
\begin{align*}
& L_{o}= \sum_{m=0}^{\infty}\left(m+\frac{\epsilon}{2}\right) a^{m \dagger} a^{m}+\sum_{m=0}^{\infty}(m+1 / 4)\left(b^{m \dagger} b^{m}+d^{m \dagger} d^{m}\right) \tag{2.2}\\
& L_{+}= \sum_{m=0}^{\infty}\left[\frac{(m+\epsilon)(m+1)}{2}\right]^{1 / 2} a^{m+1} a_{a}^{m}+\sum_{m=0}^{\infty}\left[\frac{(m+1 / 2)(m+1)}{2}\right]^{1 / 2} \\
& \times\left(b^{m+1}{ }_{b}{ }^{m}+d^{m+1}{ }_{\left.d^{m}\right)}^{\dagger}\right. \tag{2.3}\\
& L_{-}=L_{+}^{\dagger} \tag{2.4}
\end{align*}
$$

and the operator

$$
\begin{equation*}
H(z)=\sum_{m=0}^{\infty}\left[\frac{\Gamma(m+1 / 2)}{\Gamma(m+1)}\right]^{1 / 2}\left(b^{m} z^{m+1 / 4}+d^{m \dagger} z^{-m-1 / 4}\right) \tag{2.5}
\end{equation*}
$$

Under the $\mathrm{SU}(1,1)$ defined by Eqs. 2. 2, 2.3, 2.4, $\mathrm{H}(\mathrm{z})$ transforms as $J_{S}=-1 / 4$. We could as well have taken the $b^{\prime} s$ and $d^{\prime} s$ to satisfy commutation relations instead of the anti commutators of Eq. 2.1, but by use of Fermi
operators we will be able to keep the degeneracy from increasing appreciably over that of the conventional model. Similarly we could have taken spinor $b^{\prime} s$ and $d^{\prime} s$, but we avoid doing so mostly for simplicity but partly to avoid a negligible increase in the number of ghosts in the theory.

We now define the vertex for pion absorption as

$$
\begin{equation*}
V\left(k_{j}, z_{j}\right)=: e^{i k_{j} Q\left(z_{j}\right)} H^{\dagger}\left(z_{j}\right) H\left(z_{j}\right): \tag{2.6}
\end{equation*}
$$

where $\mathrm{Q}(\mathrm{z})$ is still given by Eq. 1.11 in terms of the a operators. Under the $\operatorname{SU}(1,1), V(k, z)$ transforms as a $J_{S}=-\frac{k^{2}}{2}-1 / 2=-\alpha_{0}-1 / 2$ representation. As before we obtain a dual factorizable amplitude by substituting Eq. 2.6 into Eq. 1.7 with $J_{S}=-\alpha_{0}-1 / 2$. The four point function can be immediately written down using the facts that (ignoring constant factors)

$$
\begin{equation*}
\left.<0\left|\prod_{i=1}^{4}: e^{i k_{i} Q\left(z_{i}\right)}:\right| 0\right\rangle=\prod_{1=1}^{3} \prod_{j=i+1}^{4}\left|z_{i}-z_{j}\right|^{k_{i} k_{j}} \tag{2,7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\mathrm{H}^{+}\left(\mathrm{z}_{\mathrm{i}}\right), \mathrm{H}^{-}\left(\mathrm{z}_{\mathrm{j}}\right)\right\}=\left|\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{\mathrm{j}}\right|^{-1 / 2} \tag{2.8}
\end{equation*}
$$

where the + and - refer to positive and negative frequency parts of H.
Then putting

$$
\begin{align*}
x & =\frac{\left|z_{1}-z_{2}\right|\left|z_{4}-z_{3}\right|}{\left|z_{4}-z_{2}\right|\left|z_{1}-z_{3}\right|} \tag{2.9}\\
1-x & =\frac{\left|z_{4}-z_{1}\right|\left|z_{2}-z_{3}\right|}{\left|z_{4}-z_{2}\right|\left|z_{1}-z_{3}\right|}
\end{align*}
$$

we find

$$
\begin{align*}
A_{4}= & \int_{0}^{1}{d x x x^{-1-\alpha(s)}(1-x)^{-1-\alpha(t)}\{2-2 \sqrt{x}-2 \sqrt{1-x}+} \quad \begin{aligned}
&\left.+\left(\frac{1-x}{x}\right)^{1 / 2}+\left(\frac{x}{1-x}\right)^{1 / 2}+\sqrt{x(1-x)}\right\} \\
&= 2\left\{\frac{\Gamma\left(-\alpha_{s}\right) \Gamma\left(-\alpha_{t}\right)}{\Gamma\left(-\alpha_{s}-\alpha_{t}\right)}-\frac{\Gamma\left(-\alpha_{s}+1 / 2\right) \Gamma\left(-\alpha_{t}\right)}{\Gamma\left(-\alpha_{s}-\alpha_{t}+1 / 2\right)}-\frac{\Gamma\left(-\alpha_{s}\right) \Gamma\left(-\alpha_{t}+1 / 2\right)}{\Gamma\left(-\alpha_{s}-\alpha_{t}+1 / 2\right)}\right\} \\
&+ \frac{\Gamma\left(-\alpha_{s}-1 / 2\right) \Gamma\left(-\alpha_{t}+1 / 2\right)}{\Gamma\left(-\alpha_{s}-\alpha_{t}\right)}+\frac{\Gamma\left(-\alpha_{s}+1 / 2\right) \Gamma\left(-\alpha_{t}-1 / 2\right)}{\Gamma\left(-\alpha_{s}-\alpha_{t}\right)}+ \\
& \quad+\frac{\Gamma\left(-\alpha_{s}+1 / 2\right) \Gamma\left(-\alpha_{t}+1 / 2\right)}{\Gamma\left(-\alpha_{s}-\alpha_{t}+1\right)}
\end{aligned}
\end{align*}
$$

The first point to be noted is that there is no pole at $\alpha(s)=0$ corresponding to the absence of a pion pole in elastic $\pi \pi$ scattering. Furthermore at $\alpha(\mathrm{s})=\mathrm{n}$ for $\mathrm{n} \geq 1$ the residue contains only spins $0,1, \ldots \mathrm{n}-1$. Hence, the parent A_{1} trajectory decouples from the elastic scattering as it should. There are however contributing poles on the daughter trajectories. (e.g., a 0^{+}particle at the A_{1} mass etc.)

The asymptotic behavior of A_{4} is

$$
\begin{equation*}
\lim _{s \rightarrow \infty} A_{4}=[-\alpha(\mathrm{s})]^{\alpha(\mathrm{t})+1 / 2} \tag{2.11}
\end{equation*}
$$

corresponding to a leading trajectory $1 / 2$ unit above the π trajectory.
Thus if we put $\alpha_{\rho}(\mathrm{t})=\alpha(\mathrm{t})+1 / 2$ the asymptotic behavior for $\pi \pi$ scattering is $s^{\alpha} \rho^{(t)}$ as it should be. It is to be noted that unlike the recent model
of Bardakci and Halpern ${ }^{9}$, the Pomeranchuk trajectory has no place in the Born term of the present model. However, as in the conventional amplitude, diffraction might arise from higher order non planar loop graphs.

The 4 point function of Eq. 2. 10 also contains poles at the ρ meson mass and its recurrences. That is at $\alpha(\mathrm{s})=\mathrm{n}-1 / 2$ (or $\alpha_{\rho}(\mathrm{s})=\mathrm{n}$) there are poles with spins $0,1, \ldots n$. The Chan Paton factors identify these poles as the Positive G parity ρ and f trajectories. The chiral symmetry prediction $m_{A_{1}}^{2}=2 \mathrm{~m}_{\rho}^{2}$ is also built into the model. A presently unavoidable difficulty is the existence of a spin zero pole at $\alpha_{\rho}(s)=0$ which becomes a tachyon in the physical case of $\alpha_{\rho}(0)>0$.

To examine the pole structure of the general N point function it is convenient to use the propagator Eq. 1.16 with $J_{S}=-\alpha_{0}-1 / 2$

$$
\begin{equation*}
\Delta\left(L_{o}\right)=\frac{\Gamma\left(L_{0}-\alpha_{0}-1 / 2\right) \Gamma\left(\alpha_{0}+1 / 2\right)}{\Gamma\left(L_{0}\right)} \tag{2.12}
\end{equation*}
$$

If we write Eq. 2.2 as

$$
\begin{equation*}
L_{o}=\frac{p_{o}^{2}}{2}+R \tag{2.13}
\end{equation*}
$$

with

$$
\begin{equation*}
R=\sum_{m=1}^{\infty} m a^{m \dagger} a^{m}+\sum_{m=0}^{\infty}(m+1 / 4)\left(b^{m \dagger} b^{m}+d^{m \dagger} d^{m}\right) \tag{2.14}
\end{equation*}
$$

the propagator can be written

$$
\begin{equation*}
\Delta=\frac{\Gamma\left(-\alpha\left(-\mathrm{p}_{\mathrm{o}}^{2}\right)+\mathrm{R}-1 / 2\right) \Gamma\left(\alpha_{\mathrm{o}}+1 / 2\right)}{\Gamma\left(\frac{\mathrm{p}_{\mathrm{o}}^{2}}{2}+\mathrm{R}\right)} \tag{2,15}
\end{equation*}
$$

The physical eigenvalues of R are integral and half integral. To see this it is sufficient to prove that on the physical states

$$
\begin{equation*}
\frac{1}{4} \sum_{m=0}^{\infty}\left(b^{m \dagger} b^{m}+d^{m \dagger} d^{m}\right)=\frac{1}{2} \sum_{m=0}^{\infty} b^{m \dagger} b^{m} \tag{2.16}
\end{equation*}
$$

To prove Eq. 2.16 it is sufficient to note that the operator

$$
\begin{equation*}
\delta=\sum_{m=0}^{\infty}\left(b^{m \dagger} b^{m}-d^{m \dagger} d^{m}\right) \tag{2.17}
\end{equation*}
$$

commutes with the vertex Eq. 2.6 and with the propagator Eq. 2.12 and hence annihilates the physical states, ie

$$
\begin{equation*}
\left.\delta\right|_{\Psi_{\text {phys }}^{n}} ^{n}>=0 \tag{2.18}
\end{equation*}
$$

where

$$
\begin{align*}
\mid \Psi_{\text {phys }}^{n}> & \lim _{z \rightarrow \infty} z^{\alpha+1 / 2} V\left(k_{1}, 1\right) \Delta\left(L_{o}\right) V\left(k_{2}, 1\right) \Delta\left(L_{o}\right) \ldots \\
& \ldots V\left(k_{n-1} 1\right) V\left(k_{n}, z\right) \mid 0> \tag{2.19}
\end{align*}
$$

Thus the poles of Eq. 2.15 occur at $\alpha\left(-p_{o}^{2}\right)=n$ for $R=1 / 2,3 / 2, \ldots n+1 / 2$ and at $\alpha\left(-\mathrm{p}_{\mathrm{o}}^{2}\right)=\mathrm{n}-1 / 2$ for $\mathrm{R}=0,1, \ldots \mathrm{n}$. The first set of poles corresponds to the πA_{1} trajectory and the second to the ρ, f trajectory a half unit above. It is a simple matter to construct the intermediate states in terms of the occupation number states of the $a^{\prime} s, b^{\prime} s$ and $d^{\prime} s$. The b's and d's introduce no new ghosts into the theory since they are scalar operators; and since their number operators have eignevalues zero and one only, they do not
contribute significantly to the degeneracy already in the model due to the a's and ${ }^{\dagger}{ }^{\prime}$'s. Since the new $L_{O_{0}}-\sqrt{2} L_{L_{-}}$annihilates the physical states, Eq. 2.19, the usual Ward identities are still in force. Furthermore in the unphysical case $\alpha_{0}=1 / 2$ one can generalize the Virasoro operators to provide an infinite number of Ward identities, thus allowing the possibility of eliminating all ghosts from the model.

The conservation of G parity is also easily demonstrable in the model. We define the G parity operator

$$
\begin{equation*}
G=\exp \quad i \pi \sum_{m=0}^{\infty}\left[\left(b^{m \dagger} d^{m}+d^{m \dagger} b^{m}\right)\right] \tag{2.20}
\end{equation*}
$$

with the property that

$$
\begin{equation*}
\mathrm{GVG}^{\dagger}=-\mathrm{V} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[G, L_{o}\right]=0 \tag{2.22}
\end{equation*}
$$

so that operating on Eq. 2. 19

$$
\begin{equation*}
\mathrm{G}\left|\psi_{\text {phys }}^{\mathrm{n}}\right\rangle=(-1)^{\mathrm{n}}\left|\psi_{\text {phys }}^{n}\right\rangle \tag{2.23}
\end{equation*}
$$

Inserting the identity operator $1=G^{+} G$ at any point in the n point amplitude of Eq. 1.7 (or 1.15) yields

$$
\begin{equation*}
A_{n}=(-1)^{n} A_{n} \tag{2.24}
\end{equation*}
$$

so that amplitudes for the scattering of an odd number of pions vanish identically.
would now like to investigate the behavior of A_{4} at the Adler point $\alpha_{s}=\alpha_{t}=\alpha_{u}=0$. Putting $\alpha_{s}=\alpha_{t}=\alpha$, Eq. 2. 10 becomes

$$
\begin{align*}
A_{4} & =2 \Gamma(-\alpha)\left\{\frac{\Gamma(-\alpha)}{\Gamma(-2 \alpha)}-2 \frac{\Gamma(-\alpha+1 / 2)}{\Gamma(-2 \alpha+1 / 2)}\right\} \\
& +\Gamma(-\alpha+1 / 2)\left\{2 \frac{\Gamma(-\alpha-1 / 2)}{\Gamma(-2 \alpha)}+\frac{\Gamma(-\alpha+1 / 2)}{\Gamma(-2 \alpha+1)}\right\} \tag{2.25}
\end{align*}
$$

Using the logarithmic derivative $\psi(x)=\frac{d}{d x} \ln \Gamma(x)$ and expanding to first order in α we have

$$
\begin{align*}
& \frac{\Gamma(1 / 2-\alpha)}{\Gamma(1 / 2-2 \alpha)} \cong 1+\alpha \Psi(1 / 2) \tag{2.26}\\
& \frac{\Gamma(-\alpha)}{\Gamma(-2 \alpha)} \tag{2.27}
\end{align*}=\frac{2^{2 \alpha+1} \Gamma(1 / 2)}{\Gamma(1 / 2-\alpha)} \cong 2(1+2 \alpha \ln 2+\alpha \Psi(1 / 2)) .
$$

so that

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} A_{4}\left(\alpha_{S}=\alpha_{t}=\alpha\right)=-8 \ln 2+\pi \tag{2.28}
\end{equation*}
$$

Thus there is a partial cancellation between the ρ, f and πA_{1} trajectories at the Adler point. The value at threshold ($\alpha_{\mathrm{S}} \cong 0.05 \alpha_{\mathrm{t}} \cong 0$) is approximately twenty times greater than Eq. 2.28. We have not been able to demonstrate a similar suppression in the N point amplitude. In addition the value of A_{4} at the Adler point is uncomfortably sensitive to the way the limit is approached. For example if instead of the symmetric approach above, one first takes $\alpha_{S} \rightarrow 0$ and then $\alpha_{\mathrm{t}} \rightarrow 0$ the amplitude diverges.

Because of this ambiguity and the ghost problem discussed above and because of the unsatisfactory features of the Chan Paton scheme for isospin, the amplitude proposed here is not completely acceptable. Nevertheless it has several obvious features in common with empirical observations that the conventional multi Veneziano model lacks.
III. Inclusion of $\mathrm{SU}(3)$

In this section we discuss a possible dual interaction of a nonet of scalar mesons with broken mass degeneracy. Following the method of the appendix of Ref. 7 , for any $\eta>0$ we can construct the $\operatorname{SU}(1,1)$ algebra

$$
\begin{align*}
L_{o}= & \sum_{m=0}^{\infty}\left(m+\frac{\eta}{2}\right) b^{m \dagger} b^{m} \tag{3.1}\\
L_{+}= & \sum_{m=0}^{\infty} \frac{1}{\sqrt{2}}[(m+\eta)(m+1)]^{1 / 2} b^{m+1}{ }_{b}{ }^{m}(3.2) \\
L_{-}= & L_{+}^{\dagger} \tag{3.3}
\end{align*}
$$

and under this algebra the field

$$
\begin{equation*}
B(z)=\sum_{m=0}^{\infty}\left[\frac{\Gamma(m+\eta)}{\Gamma(m+1)}\right]^{1 / 2} b_{z}^{m} m+\eta / 2 \tag{3.4}
\end{equation*}
$$

transforms covariantly with $J_{S}=-\eta / 2$. Following Bardakci and Halpern ${ }^{9}$ we would like to make b^{m} an $\operatorname{SU}(3)$ triplet and write

$$
\begin{align*}
& L_{o}=\sum_{m=0}^{\infty}\left(m+\frac{\eta}{2}\right) b^{m \dagger}\left(\alpha_{1} \lambda^{o}+\alpha_{2} \lambda^{8}\right) b^{m} \\
& L_{+}=\sum_{m=0}^{\infty} \frac{1}{\sqrt{2}}[(m+\eta)(m+1)]^{1 / 2} b^{m+1}\left(\beta_{1} \lambda^{0}+\beta_{2} \lambda^{8}\right) b^{m}(3.6) \\
& L_{-}=L_{+}^{\dagger} \tag{3.7}
\end{align*}
$$

However, we are not free to have arbitrary symmetry breaking.
Requiring the operators of Eq. 4.3 to satisfy the $\mathrm{SU}(1,1)$ algebra gives us the non linear constraints.

$$
\begin{align*}
\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2} & =\sqrt{\frac{3}{2}} \beta_{1} \tag{3.8a}\\
\alpha_{2} \beta_{1}+\alpha_{1} \beta_{2} & -\sqrt{\frac{1}{2}} \alpha_{2} \beta_{2}=\sqrt{\frac{3}{2}} \beta_{2} \tag{3.8b}\\
\beta_{1}^{2}+\beta_{2}^{2} & =\sqrt{\frac{3}{2}} \alpha_{1} \tag{3.8c}\\
2 \beta_{1} \beta_{2}-\frac{\beta_{2}^{2}}{\sqrt{2}} & =\sqrt{\frac{3}{2}} \alpha_{2} \tag{3.8d}
\end{align*}
$$

Besides the trival solution $\alpha_{1}=\beta_{1}=\sqrt{3 / 2} ; \alpha_{2}=\beta_{2}=0$ there are two solutions with non vanishing symmetry breaking

$$
\begin{array}{ll}
\alpha_{1}=\sqrt{2 / 3}=\beta_{1} & \alpha_{2}=\sqrt{1 / 3}=\beta_{2} \\
\alpha_{1}=\sqrt{1 / 6}=\beta_{1} & \alpha_{2}=-\sqrt{1 / 3}=\beta_{2} \tag{3.9b}
\end{array}
$$

corresponding to the two matrices

$$
\begin{align*}
& A_{1}=\sqrt{2 / 3} \lambda^{0}+\sqrt{1 / 3} \lambda^{8} \tag{3.10a}\\
& A_{2}=\sqrt{1 / 6} \lambda^{0}-\sqrt{1 / 3} \lambda^{8} \tag{3.10b}
\end{align*}
$$

A_{1} and A_{2} can be seen to be the projection operators onto the space of non strange and strange quarks respectively. We would now like to build a dual amplitude based on the algebra

$$
\begin{align*}
& L_{o}=\sum_{m=0}^{\infty}\left(m+\frac{\epsilon}{2}\right) a^{m \dagger} a^{m}+\sum_{m=0}^{\infty}\left(m+\frac{\eta_{1}}{2}\right)\left(b^{m \dagger} A_{1} b^{m}+d^{m \dagger} A_{1} d^{m}\right) \\
& +\sum_{m=0}^{\infty}\left(m+\frac{\eta_{2}}{2}\right)\left(b^{m \dagger} A_{2} b^{m}+d^{m \dagger} A_{2} d^{m}\right) \tag{3.11a}\\
& L_{+}=\frac{1}{\sqrt{2}} \sum_{m=0}^{\infty}[(m+\epsilon)(m+1)]^{1 / 2} a^{m+1} a^{\dagger} m \\
& +\frac{1}{\sqrt{2}} \sum_{m=0}^{\infty}\left[\left(m+\eta_{1}\right)(m+1)\right]^{1 / 2}\left(b^{m+1} A_{1} b^{m}+d^{m+1}{ }^{\dagger} A_{1} d^{m}\right) \\
& +\frac{1}{\sqrt{2}} \sum_{m=0}^{\infty}\left[\left(m+\eta_{2}\right)(m+1)\right]^{1 / 2}\left(b^{m+1} A_{2} b^{m}+d^{m+1} A_{2} d^{m}\right) \tag{3.11b}\\
& L_{-}=L_{+}^{\dagger} \tag{3.11c}
\end{align*}
$$

The parameter ϵ is to be taken to zero at the end of all operations but η_{1} and η_{2} are constants to be determined later by the meson masses. The model of Ref. 9 is obtained in the limit $\eta_{1} \rightarrow 1, A_{1} \rightarrow 1, A_{2} \rightarrow 0$. However terms in A_{2} are important for a consistent dual theory with symmetry breaking. We now consider the spin zero $\mathrm{SU}(3)$ triplet

$$
\begin{align*}
\mathrm{B}_{\mathrm{r}}(\mathrm{z})=\sum_{\mathrm{s}=1}^{3} & \sum_{\mathrm{m}=0}^{\infty} \\
\Gamma^{1 / 2}(\mathrm{~m}+1) & \frac{1}{\Gamma^{1 / 2}\left(\mathrm{~m}+\eta_{1}\right) A_{1_{r s}} \mathrm{~b}_{\mathrm{s}}^{\mathrm{m}} \mathrm{z}^{m+\eta_{1 / 2}}} \tag{3.12}\\
& \left.+\Gamma^{1 / 2}\left(\mathrm{~m}+\eta_{2}\right) \mathrm{A}_{2_{r s}} \mathrm{~b}_{\mathrm{s}}^{\mathrm{m}} \mathrm{z} m+\eta_{2 / 2}\right]
\end{align*}
$$

with z on the unit circle.
Similarly

$$
\begin{align*}
\mathrm{D}_{\mathrm{r}}(\mathrm{z})=\sum_{\mathrm{s}=1}^{3} & \sum_{\mathrm{m}=0}^{\infty} \frac{1}{\Gamma^{1 / 2}(\mathrm{~m}+1)}\left[\Gamma^{1 / 2}\left(\mathrm{~m}+\eta_{1}\right) A_{1} \mathrm{~d}_{\mathrm{s}}^{\mathrm{m}} \mathrm{z}^{\mathrm{m}+1 / 2}\right. \\
& \left.+\Gamma^{1 / 2}\left(\mathrm{~m}+\eta_{2}\right) A_{2} \mathrm{~d}_{\mathrm{rs}}^{\mathrm{m}} \mathrm{z}^{\mathrm{m}}+\eta^{\eta} / 2\right] \tag{3.13}
\end{align*}
$$

we now define the quark operator

$$
\begin{equation*}
\mathrm{H}_{\mathrm{r}}(\mathrm{z})=\mathrm{B}_{\mathrm{r}}(\mathrm{z})+\mathrm{D}_{\mathrm{r}}^{\dagger}(\mathrm{z}) \tag{3.14}
\end{equation*}
$$

Commuting H with the $\operatorname{SU}(1,1)$ generators of Eq. 3.11 and comparing with Eqs. 1.3 and 1.4 we see that H_{r} transforms with $J_{S}=-\eta_{1 / 2}$ if $r=1$ or 2 and with $J_{S}=-\eta_{2 / 2}$ if $r=3$.

The vertices for meson absorption are now written

$$
\begin{equation*}
\Phi^{\alpha}(\mathrm{k}, \mathrm{z})=: \mathrm{e}^{\mathrm{ik} \cdot \mathrm{Q}(\mathrm{z})} \mathrm{H}^{\dagger}(\mathrm{z}) \lambda^{\alpha} \mathrm{H}(\mathrm{z}): \tag{3.15}
\end{equation*}
$$

Commuting with the generators we find

$$
\begin{align*}
{\left[L_{o}, \Phi^{\alpha}(k, z)\right]=} & -z \frac{d}{d z} \Phi^{\alpha}(k, z) \tag{3.16}\\
{\left[L_{ \pm}, \Phi^{\alpha}(k, z)\right]=} & -\frac{z^{ \pm 1}}{\sqrt{2}} \left\lvert\, z \frac{d}{d z} \Phi^{\alpha} \pm \frac{k^{2}}{2} \Phi^{\alpha}\right. \\
& \pm: e^{i k \cdot Q} H^{\dagger}\left\{\frac{\eta_{1} A_{1}+\eta_{2} A_{2}}{2}, \lambda^{\alpha}\right\} H: \mid(3.17) \tag{3.17}
\end{align*}
$$

$\mathrm{SU}(1,1)$ covariance requires

$$
\begin{equation*}
\frac{1}{2}\left\{\eta_{1} A_{1}+\eta_{2} A_{2}, \lambda^{\alpha}\right\}=h^{\alpha} \lambda^{\alpha} \quad(\text { no sum on } \alpha \text {) } \tag{3.18}
\end{equation*}
$$

Using Eqs. $3.10 \mathrm{a}, \mathrm{b}$ and the familiar anti commutation relations of the $\lambda^{\prime} \mathrm{s}$ we find the following eigenstates of Eq. 3.18

$$
\begin{align*}
\Phi^{\pi^{ \pm}, \pi^{0}} & : \frac{\lambda^{1} \pm i \lambda^{2}}{\sqrt{2}}, \lambda^{3} \tag{3.19a}\\
\Phi^{K^{ \pm}, K^{0}, \overline{\mathrm{~K}}^{0}}: & : \frac{\lambda^{4} \pm i \lambda^{5}}{\sqrt{2}}, \frac{\lambda^{6} \pm i \lambda^{7}}{\sqrt{2}} \tag{3.19b}\\
\Phi^{\eta} & : \sqrt{2 / 3} \lambda^{0}+\sqrt{1 / 3} \lambda^{8} \tag{3.19c}\\
\Phi^{\eta^{\prime}} & :-\sqrt{1 / 3} \lambda^{0}+\sqrt{2 / 3} \lambda^{8} \tag{3.19d}
\end{align*}
$$

with eigenvalues

$$
h_{\alpha}=\left(2 / 3 \eta_{1}+1 / 3 \eta_{2}\right)+\frac{1}{\sqrt{3}}\left(\eta_{1}-\eta_{2}\right) d_{8 \alpha \alpha}
$$

Substituting Eq. 3.18 into 3.17 we see that the vertex Φ^{α} transforms under $\operatorname{SU}(1,1)$ with

$$
\begin{equation*}
J_{s}(\alpha)=-\frac{\mathrm{k}_{\alpha}^{2}}{2}-\mathrm{h}_{\alpha} \tag{3.21}
\end{equation*}
$$

According to criterion IV of Ref. 1., in order for particles with different quantum numbers to interact dually they must have the same J_{s}. Thus if the mass splittings of the Φ^{α} are octet dominated i.e. :

$$
\begin{equation*}
\mathrm{k}_{\alpha}^{2}=-\mathrm{m}_{0}^{2}-\sqrt{3} \delta \mathrm{~m}^{2} \mathrm{~d}_{8 \alpha \alpha} \tag{3.22}
\end{equation*}
$$

we must have

$$
\begin{equation*}
\eta_{2}-\eta_{1}=-(3 / 2) \delta m^{2}=m_{\mathrm{K}}^{2}-\mathrm{m}_{\pi}^{2} \tag{3.23}
\end{equation*}
$$

Then J_{S} becomes independent of α depending only on the central mass m_{0} and the parameters η_{1} and η_{2}.

$$
\begin{equation*}
\mathrm{J}_{\mathrm{s}}=\frac{\mathrm{m}_{0}^{2}}{2}-\left(\frac{2}{3} \eta_{1}+\frac{1}{3} \eta_{2}\right)=\frac{\mathrm{m}_{\pi}^{2}}{2}-\eta_{1} \tag{3.24}
\end{equation*}
$$

The dual amplitude for the scattering of n scalar mesons with $\operatorname{SU}(3)$ quantum numbers $\alpha_{1} \alpha_{2} \ldots \alpha_{n}$ is according to 1.7

$$
\begin{gather*}
A_{\alpha_{1} \alpha_{2} \ldots \alpha_{n}}=\frac{1}{C} \int\left(\prod_{i=1}^{n} \frac{d z_{i}}{z_{i}} \theta\left(\arg z_{i}-\arg z_{i+1}\right)\left|z_{i}-z_{i+1}\right|^{-1-J} s\right) \times \\
 \tag{3.25}\\
\\
\times<0\left|\Phi^{\alpha_{1}}{ }_{\Phi}^{\alpha}{ }^{\alpha} \ldots \Phi^{\alpha}{ }^{n}\right| 0>
\end{gather*}
$$

In the case of the four point function 3.25 is easy to evaluate using the anti commutation relation

$$
\begin{align*}
\left\{B_{r}\left(z_{i}\right), B_{S}^{\dagger}\left(z_{j}\right)\right\}= & e^{\frac{i \pi \eta_{1}}{2}} \Gamma\left(\eta_{1}\right) A_{1}{ }_{r s}\left|z_{i}-z_{j}\right|^{-\eta_{1}} \\
& +e^{\frac{i \pi \eta_{2}}{2}} \Gamma\left(\eta_{2}\right) A_{2_{r S}}\left|z_{i}-z_{j}\right|^{-\eta_{2}} \tag{3,26}
\end{align*}
$$

although some may prefer to use the factorized form of Eqs. 1.15 and 1.16. With either method one finds for example in the case of $\pi^{\circ} \pi^{\circ}$ elastic scattering, the st term in the amplitude takes the form

$$
\begin{align*}
\mathrm{A}_{3333} & =\frac{\Gamma\left(-\alpha_{\pi}(\mathrm{s})\right) \Gamma\left(-\alpha_{\pi}(\mathrm{t})\right)}{\Gamma\left(-\alpha_{\pi}(\mathrm{s})-\alpha_{\pi}(\mathrm{t})\right)}-\frac{\Gamma\left(-\alpha_{\pi}(\mathrm{s})\right) \Gamma\left(-\alpha_{\pi}(\mathrm{t})+\eta_{1}\right)}{\Gamma\left(-\alpha_{\pi}(\mathrm{s})-\alpha_{\pi}(\mathrm{t})+\eta_{1}\right)} \\
& -\frac{\Gamma\left(-\alpha_{\pi}(\mathrm{t})\right) \Gamma\left(-\alpha_{\pi}(\mathrm{s})+\eta_{1}\right)}{\Gamma\left(-\alpha_{\pi}(\mathrm{s})-\alpha_{\pi}(\mathrm{t})+\eta_{1}\right)}+\frac{\Gamma\left(-\alpha_{\pi}(\mathrm{s})+\eta_{1}\right) \Gamma\left(-\alpha_{\pi}(\mathrm{t})+\eta_{1}\right)}{\Gamma\left(-\alpha_{\pi}(\mathrm{s})-\alpha_{\pi}(\mathrm{t})+2 \eta_{1}\right)} \tag{3.27}\\
& +\frac{\Gamma\left(-\alpha_{\pi}(\mathrm{s})-\eta_{1}\right) \Gamma\left(-\alpha_{\pi}(\mathrm{t})+\eta_{1}\right)}{\Gamma\left(-\alpha_{\pi}(\mathrm{s})-\alpha_{\pi}(\mathrm{t})\right)}+\frac{\Gamma\left(-\alpha_{\pi}(\mathrm{s})+\eta_{1}\right) \Gamma\left(-\alpha_{\pi}(\mathrm{t})-\eta_{1}\right)}{\Gamma\left(-\alpha_{\pi}(\mathrm{s})-\alpha_{\pi}(\mathrm{t})\right)}
\end{align*}
$$

If we choose $\eta_{1}=1 / 2$ we recover the $\pi \pi$ amplitude of Eq. 2. 10 (apart from some factors of 2 due to the trace of A_{1}.) There is a leading trajectory one half unit above the π trajectory. The isospin content of the present model is however entirely different from the model of the preceeding section which relied on the Chan Paton formalism. As can be seen by examining Eq. 3.25 for $\pi \pi$ scattering in other charge states the ρ, A_{2} trajectories decouple from the model leaving only isospin zero trajectories (ω, f). By taking $\eta_{1}=1$ we can move the leading trajectory to one unit above the π trajectory thus obtaining an isospin zero Pomeranchuk trajectory as in Ref. 9.

In the case of scalar $\mathrm{K} \pi$ scatte ring Eq. 3.25 yields

$$
\begin{align*}
& A_{K \pi K_{K}}^{+0}=\frac{\Gamma\left(-\alpha_{K}(s)\right) \Gamma\left(-\alpha_{\pi}(t)\right)}{\Gamma\left(-\alpha_{K}(s)-\alpha_{\pi}(t)\right)}-\frac{\Gamma\left(-\alpha_{K}(s)+\eta_{1}\right) \Gamma\left(-\alpha_{\pi}(t)\right)}{\Gamma\left(-\alpha_{K}(s)-\alpha_{\pi}(t)+\eta_{1}\right)} \\
& +2 \frac{\Gamma\left(-\alpha_{K}(\mathrm{~s})+\eta_{1}\right) \Gamma\left(-\alpha_{\pi}(\mathrm{t})-\eta_{1}\right)}{\Gamma\left(-\alpha_{K}(\mathrm{~s})-\alpha_{\pi}(\mathrm{t})\right)} \tag{3.28}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha_{K}(\mathrm{~s})=-\frac{\mathrm{m}_{\mathrm{K}}^{2}}{2}+\frac{\mathrm{s}}{2}=\alpha_{\pi}(\mathrm{s})+\frac{\eta_{1}-\eta_{2}}{2} \tag{3.29}
\end{equation*}
$$

If $\eta_{1}=1 / 2$, the asymptotic behavior is s^{ρ} as desired and poles appear in the s channel at the mass of the K^{*} and its recurrences with

$$
\begin{equation*}
\mathrm{m}_{\mathrm{K}}^{2} * \mathrm{~m}_{\rho}^{2}=\mathrm{m}_{\mathrm{K}}^{2}-\mathrm{m}_{\pi}^{2} \tag{3.30}
\end{equation*}
$$

However the parent trajectory in the K^{*} family decouples. Thus one might prefer to take $\eta_{1}=1$ and adopt the Pomeranchuk interpretation of the leading pole.

By examining scalar $\mathrm{K}^{+} \mathrm{K}^{+}$scattering one finds the existence of exotics on low lying daughter trajectories as expected.

The general four point function can be written as follows.

$$
\begin{align*}
A_{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}}= & \frac{1}{C} \int \prod_{i=1}^{4} \frac{d z_{i}}{z_{i}}\left|z_{i}-z_{i+1}\right|^{-1+\eta_{1}-\frac{m_{\pi}^{2}}{2}} \theta\left(\arg z_{i}-\arg z_{i+1}\right) \\
& \times\left(\prod_{i=1}^{3} \prod_{j=i+1}^{4}\left|z_{i}-z_{j}\right|^{k} k_{j} \cdot k_{j}\right) \cdot T_{4} \tag{3.31}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{T}_{4}=\langle 0| \prod_{\mathrm{i}=1}^{4}: \mathrm{H}^{\dagger}\left(\mathrm{z}_{\mathrm{i}}\right) \lambda^{\alpha} \mathrm{H}\left(\mathrm{z}_{\mathrm{i}}\right):|0\rangle . \tag{3.32}
\end{equation*}
$$

We adopt the notation

$$
\begin{equation*}
<i j k \ldots n>\equiv \operatorname{Tr}\left(\lambda^{\alpha} \mathrm{i} \mathrm{C}_{\mathrm{ij}} \lambda^{\alpha} \mathrm{j}_{\mathrm{jk}} \lambda^{\alpha}{ }^{\alpha} \ldots \lambda^{\alpha}{ }^{n} \mathrm{C}_{\mathrm{ni}}\right) \tag{3.33}
\end{equation*}
$$

with

$$
\begin{equation*}
\left(C_{i j}\right\}_{r s}=\left\{B_{r}\left(z_{i}\right), B_{s}^{\dagger}\left(a_{j}\right)\right\} \tag{3.34}
\end{equation*}
$$

Then

$$
\begin{align*}
\mathrm{T}_{4} & =\langle 1234\rangle+<4321\rangle \\
& -<1243\rangle-<2314\rangle-<3421\rangle-<4132\rangle \\
+ & \langle 12\rangle\langle 34\rangle+<23\rangle\langle 41\rangle+\ll 13\rangle\langle 24\rangle \tag{3.35}
\end{align*}
$$

The cyclic symmetry of the four point function is evident from Eq. 3. 31 and 3.35. We assume that the cyclicity of the higher N point functions can be similarly demonstrated although we have not developed a general proof of this.

Finally we note that we have taken the field $H(z)$ to be spin zero for simplicity. It is natural of course to make H a Lorentz spinor in which case one could form the pseudoscalar octet

$$
\begin{equation*}
\Phi^{\alpha}=: e^{i k \cdot Q} \overline{\mathrm{H}} \gamma_{5} \lambda^{\alpha} \mathrm{H}: \tag{3.36}
\end{equation*}
$$

The $\operatorname{SU}(1,1)$ transformation properties Φ^{α} are not altered by this generalization but the scattering amplitudes above are modified by the appropriate traces of γ matrices (e.g., in the expression 3.33 each λ matrix is multiplied by γ_{5},) The odd N point functions are then identically zero. Additional ghosts appear in the model due to the 3 rd and 4 th Dirac components of the b's and d's. In view of the fact that the $\operatorname{SU}(3)$ breaking mechanism discussed in this section forces $\pi^{0} \eta$ degeneracy and the canonical quark model mixing angle (Eqs. 3. 19 and 3.22) it does not seem worthwhile to pursue this possibility without more drastic modifications of the model. It is interesting however that phenomenological attempts to construct a dual $\pi^{0} \eta$ scattering amplitude have also been forced to assume a $\pi^{0} \eta$ degeneracy. This fact makes it additionally interesting to try to construct from the group theoretical point of view a dual model with a different symmetry breaking mechanism in which π^{0} and η do not have equal masses.

ACKNOWLEDGEMENTS

This work arose out of a model for nucleons based on the vertex

$$
V_{\Psi}(k, z)=: e^{i k \cdot Q} \quad u_{r} B_{r}(z)+\bar{u}_{r} D_{r}^{\dagger}(z)
$$

where B_{r} and D_{r} were fermion spinors with $J_{S}=-1 / 2$. After some preliminary investigations of this field interacting with itself and with the scalar mesons of the conventional Veneziano model were made, we received the paper of Bardakci and Halpern ${ }^{9}$ where essentially the same operators and the same representation of $\operatorname{SU}(1,1)$ were used to definc a quark field. For that reason and because the model can be easily reconstructed by the reader, we do not discuss it here. The author is indebted to Professor S. Mandelstam for providing a copy of Ref. 9. He would also like to acknowledge several interesting discussions with Dr. P. Ramond.

REFERENCES

1. Group Theoretical Construction of Dual Amplitudes, L. Clavelli and P. Ramond, Physical Review, to be published.
2. D. J. Dorren, V. Rittenberg and H. R. Rubinstein, CERN preprint 1970. J. Willemson, University of Chicago preprint, EFI 70391970 to be published. N. Panchapakesan, Lettere al Nuovo Cimento IV, 235, (1970).
3. C. Lovelace, Physics Letters 28B, 265, (1968).
4. K. Bardakci and M. B. Halpern, Physical Review Letters 24, 428, (1970). J. P. Lebrun and G. Venturi, Nuovo Cimento, Aug. (1970). Motohiko Yoshimura, University of Chicago preprint, August (1970).
5. Y. Nambu, University of Chicago Report, EFI 69-64 (unpublished).
S. Fubini, D. Gordon, and G. Veneziano, Physics Letters 29B, 679 (1969)
6. S. Fubini and G. Veneziano, Nuovo Cimento, 67, 29 (1970), S. Fubini and G. Veneziano, MIT preprint CTP,128, (1970).
7. L. Clavelli and P. Ramond, Physical Review D2, 973, (1970) .
8. J.E. Paton and Chan Hong Mo, Nuclear Physics, B10, 516, (1969).
9. New Dual Quark Models, K. Bardakci and M. B. Halpern, Berkeley Preprint, (1970).
