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ABSTRACT 

As an example of the group theoretical approach to the construction 

of new dual amplitudes we discuss a model pion N point function in 

which the TI trajectory lies i/2 unit below the leading (p) trajectory. 

The model is completely factorizable, contains a natural G parity 

and obeys the Adler condition approximately. The degeneracy of the 

spectrum and the ghost problem is essentially the same as in the 

conventional Veneziano N point function. In a separate section we 

discuss a dual interaction of an SU(3) nonet of scalar mesons with 

mass splitting. 

e Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 



-2- THY - 9 

I. INTRODUCTION 

Recently, by abstracting the symmetry of the Veneziano N point 

function, a general group theoretical prescription for factorizable 

dual amplitudes has been given’, opening the way for the construction 

of a wide variety of new dual amplitudes some of which will hopefully 

be closer to nature than the conventional multi-Veneziano expression. 

As an example of this technique, we propose in Section II a model pion 

N point function incorporating the p trajectory, G parity, and the Adler 

condition approximately. We note here that pion N point functions based 

on a generalizationc of the Lovelace amplitude2 or on a relativistic 

quark model4 are not dual in the group theoretic sense since the cyclic 

symmetry is put in by hand. Since it contains all the diseases of the 

conventional amplitude, the major interest in the present model is the 

example it provides of one dual vertex carrying two trajectories. In 

addition to the TI Ai trajectory containing the external particles, there 

is a leading trajectory one half unit higher containing the p, and f. 

States on the parent pi A1 trajectory have negative G parity and are 

decoupled from even numbers of pions. In Section III we discuss a 

model for the N point function of a nonet of scalar mesons with SU(3) 

mass splittings. The model contains a leading trajectory a variable 

distance above the scalar meson trajectory. 
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For completeness we summarize here the basic rules for a 

factorizable, dual amplitude given in Ref. 1. In terms of suitable 

creation and destruction operators one constructs a representation of 

the SU(1,i) generators L o, L* and a vertex operator V(z), z on the unit 

circle, transforming under the SU(1, 1) as some spin J representation. 
S 

That is 

[ Lo’ L*I = f L* (1.1) 

[L,, L-1 = - Lo (1.2) 

[ Lo’ V(z)] = - z -$ V(z) (1.3) 

[ L*:, V(z)1 = - % *I (z&- JS) v(z) (1.4) 

V(z) represents the vertex for the absorption of a particle and may 

depend on all of the quantum numbers of that particle, and in particular 

on its four momentum k 
P’ 

The significance of Js as the SU(i, 1) spin of 

the particle is clear since if we define the Casimir operator 

L2 = Lo2 - L+L- - L-L+ (1.5) 

then using 1. 3 and 1.4 

L2 V(z) / 0 > = Js(Js + 1) V(z) 1 0 > (1.6) 

If one has N such vertices for the absorption of N (in general different) 

particles each of which transforms with the same SU(1, 1) spin Js, a 

factorizable, dual N point function is 



,- N r cl” 

AN= $ 
” 
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I zi -zi +I I 

-i-Js 
8 (arg zi-arg zi+i)Vi(kizi) ( O> (1. 7) 

3 
where 

P dz dz *dz 
. . , . cc 

c= I . . 
0 (arg z - arg z ) 0 (arg z - arg z ) 

zz z j z-z.1 J z’ - z”I ] zO’- ZI 

The contours are all taken around the unit circle and the z’s are defined 

cyclically, zN+i E zl. 

The conventional multi Veneziano amplitude employs an infinite set of 

boson creation and destruction operators5 satisfying 

[an, aFtI =bmngpv P 
with metric g TV = (1,1,1, -1). 

Under the SU(1,i) algebra generated by 

m 
c 

t 
Lo = (m+t)am am 

m=o 
cc 

L, = 
III 

(m+e)(m+l) 

1 

112 

VT 
,m+l+ m 

a 
m=o 

(1.9) 

(1.8) 

(1. IO) 

L =LJ 

the operator 

Qp(z) =i m=. [,m;f')! 1"' ia; .m+E/2 + a+ z-m-c!2J (1+ 11) 

transforms effectively as an SU(l.l) scalar in the limit E - 0. In that 

limit the operator 

V(k, z) = : e 
ik. Q(z) 

(1.12) 
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6,7 
2 

transforms with J,+ =eao. 

Taking Eq. 1.12 to represent the vertex for the absorption of a scalar 

meson of momentum kp and substituting into Eq. 1. 5 with J = -1~ 
S 0’ 

one 

obtains the usual N point function in Koba-Nielsen form. It is interesting 

to note that the two points of special simplicity in the model a = 0 and 
0 

cy 
0 

= 1 are the null points of the Casimir operator Eq. 1. 6. 

Because of the projective invariance, one can in general reduce 

Eq. 1. 5 to the explicity factorized form by the Fubini Veneziano technique’. 

Define the ground state bra and ket. 

kn > = lim z 
-J 

n 
s V(k n’ Zn) IO ’ 

Z+M 
n 

< ki 1 = lim z1 JS 

z +o 
< 01 Wlzl) 

1 

(1.13) 

(1.14) 

Then 
n-3 

An = < kl j V(k2> 1) fl Ai (Lo) V (ki+2. 1) 1 1 k,’ (1.15) 
i=i 

where the propagator is given by 

J 
1 

Ai (Lo) = dxi xi 
- i+L,+J s (i-x)-4-Js (1.16) 

0 

In the multi Veneziano amplitude the external particle lies on the leading 

trajectory. We now proceed to discuss a generalization in which the 

external particle lies i/2 unit below the leading trajectory. Such a con- 

figuration is close to the physical situation in which the il trajectory is 

i/2 unit below the p trajectory. We will allow in Section II the incorpora- 

tion of the Chan Paton isospin factors to be understood although we will 
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not discuss them explicitly. 

II Pion N Point Function 

We would now like to consider a model for the pion N point function 

which includes the ~iAi and p, and f trajectories. To this end we introduce 

two infinite sets of spinless Fermi operators satisfying the anti commuta- 

tion relations 

{b”,b”+} = {dm,dn+} = bmn 

{bm,bn} = {bm,dn} = {dm,dn} = {bm,dn+} = 0 (2.1) 

and commuting with the a’s of Eq. 1. 9. We construct the following SU(i, 1) 

generators 
m m 

Lo = c 
m=o 

(m+F) a m+am + c (m+1/4) (bmtbm + dmtdm) (2. 2) 
m=o 

m 

L+ = 
1 L 

(m+e) (m+i) 112 t m m+i m (m+1/2)(m+l) i” 
2 1 a a + 

U 2 
m=o m=o 1 

m+i t t 
x (b bm + dm+i dm) 

and the operator 

L =Ll 
(2.4) 

F(m+l/ 2) 
r(m+l) 1 112 

(b 
m zm+1/4 + dm+ z-m-1/4 

) (2.5) 

Under the SU(I, 1) defined ‘by Eqs. 2. 2, 2. 3, 2.4, H(z) transforms as 

Js = -i/4. We could as well have taken the b’s and d’s to satisfy commutation 

relations instead of the anti commutators of Eq. 2. 1, but by use of Fermi 
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operators we will be able to keep the degeneracy from increasing appreciably 

over that of the conventional model. Similarly we could have taken 

spinor b’s and d’s, but we avoid doing so mostly for simplicity but partly 

to avoid a negligible increase in the number of ghosts in the theory. 

We now define the vertex for pion absorption as 

ikjQ(zj) 
V(kj.zj) = : e Ht(zj) H(zj ) : (2. 6) 

where Q(z) is still given by Eq. 1. 11 in terms of the a operators. Under 

the SU(1, I), V(k,z) transforms as a Js = - $ 112 = -(y - 
0 

1/ 2 representation. 

As before we obtain a dual factorizable amplitude by substituting Eq. 2. 6 

into Eq. 1. 7 with Js= -(ro-i/2. The four point function can be immediately 

written down using the facts that (ignoring constant factors) 

<O/j- :e l 
ik. Q(zi) 

i=l 

k.k. 
1 zi - Zj 1 l J (2. 7) 

and 

{H+(zi), H-(zj)} = 1 zi - zj j -1’2 (2. 8) 

where the + and - refer to positive and negative frequency parts of H. 

Then putting 

x= lz1-z21 b4-z31 

I z4-z21 I z1 - z3/ 

(2.9) 

I - x = 
b4-zll lz2 -z31 
1 z4-z2] 1 z1 -z3] 



-8- THY - 9 

we find 

i 

A4 = dx x-~-a(s) 
(1-x) -i-a(t) { 2-2&F -2k./TG + 

0 

+ ( ~$q2 + ( &j’” + dqGj- } 

= I 2 
J3-(YsvY-q r(-~s+l’2)r(-@t) r(-os)r(-cTt+l/2) 

I-(-as-‘yt) - r(-as-ut+l12) - I-(-~~-~~+ 112) 
1 

+ 
r(-cus-1’2)r(-Cut+l’2) r(-as+i/2)r(-at-f/2) 

U-as-at) 
+ 

n-as-q 
-I 

f 
r(-as+l/2)r(-at+t/2) 

r(-as-et+ 1) (2. 10) 

The first point to be noted is that there is no pole at a(s) = 0 corres- 

ponding to the absence of a pion pole in elastic T~V scattering. Further- 

more at LY( s) = n for n 2 1 the residue contains only spins 0,1,. . . . n- 1, 

Hence, the parent Ai trajectory decouples from the elastic scattering 

as it should. There are however contributing poles on the daughter 

trajectories. (e. g., a O+particle at the Ai mass etc. ) 

The asymptotic behavior of A4 is 

lim A 
s-m 4 

= [ -a(S)]e(t)+ 1/Z (2.11) 

corresponding to a leading trajectory 1’2 unit above the n trajectory. 

Thus if we put cup(t) = a(t) + i/2 the asymptotic behavior for T~V scattering 
0 (t) 

is S P as it should be. It is to be noted that unlike the recent model 
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of Bardakci and Halpern9, the Pomeranchuk trajectory has no place in 

the Born term of the present model. However, as in the conventional 

amplitude, diffraction might arise from higher order non planar loop 

graphs. 

The 4 point function of Eq. 2. 10 also contains poles at the p meson 

mass and its recurrences. That is at a(s) = n-1/2 (or ep(s) = n) there 

are poles with spins 0, 1, . . . n. The Chan Paton factors identify these 

poles as the Positive G parity p and f trajectories. The chiral symmetry 

prediction mA2 = 2m 2 
1s also built into the model. A presently 

1 P 

unavoidabledifficulty is the existence of a spin zero pole at LY (s) = 0 
P 

which becomes a tachyon in the physical case of (Y (0) > 0. 
P 

To examine the pole structure of the general N point function it is 

convenient to use the propagator Eq. 1.16 with J = -CY - 112 
S 0 

m. - Go- l/2) qa 
A(Lo) = 

o + f/2) 

Iwo) (2.12) 

If we write Eq. 2. 2 as 
PO2 

Lo= 2+R (2.13) 

with 

mamtam + me0 (m+l/4)(bmtbm + dmtdm) 

the propagator can be written 

A= 
I?(-@(-p$ + R-1/2)l?(ao+ 1/2) 

r 

(2. 14) 

(2.15) 
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The physical eigenvalues of R are integral and half integral. To see 

this it is sufficient to prove that on the physical states 

M cc 
1 

iI (b mt m 
4 m=o 

b + dm+dm) =; lx b mtbm 
m=o 

To prove Eq. 2. 16 it is sufficient to note that the operator 

m 

6 = lx (b 
mtbm mt m -d d) 

m=o 

commutes with the vertex Eq. 2. 6 and with the propagator Eq. 2. 12 

and hence annihilates the physical states, ie 

6 IC 
phys 

> =o 

(2. 16) 

(2.17) 

(2. 18) 

where 
n (Y + l/2 

I ;hys> 
= ,lsW z ’ V(ki. W(Lo)V(k2> i)Wo). . . 

. . . . V(k,- 1 l)Wn> 2) / 0 ’ (2.19) 

Thus the poles of Eq. 2.15 occur at a(-pi) = n for R = i/2, 312,. . . n + 112 

and at 0(-p: ) = n - i/2 for R = O,l,. .n. The first set of poles 

corresponds to the TT Ai trajectory and the second to the p, f trajectory 

a half unit above. It is a simple matter to construct the intermediate 

states in terms of the occupation number states of the a’s, b’s and dls. 

The b’s and d’s introduce no new ghosts into the theory since they are 

scalar operators; and since their number operators have eignevalues 

zero and one only, they do not 
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contribute significantly to the degeneracy already in the model due to 

the a’s and atIs. Since the new Lo- hiz L annihilates the physical 

states, Eq. 2. i9, the usual Ward identities are still in force. Further- 

more in the unphysical case a0 = i/2 one can generalize the Virasoro 

operators to provide an infinite number of Ward identities, thus 

allowing the possibility of eliminating all ghosts from the model. 

The conservation of G parity is also easily demonstrable in the model. 

We define the G parity operator 

a 

G = exp in 
I[ 

(b 
ml m 

d +d mt m b) 
m=o I 

with the property that 

GVG+ = - V 

and 

[ G, LoI = 0 

so that operating on Eq. 2. 19 

G 1 +p:ys ’ = (-17 1 +p;ys’ 

Inserting the identity operator 1 = GfG at any point in the n point 

amplitude of Eq. 1. 7 (or 1. 15) yields 

(2.20) 

(2.21) 

(2.22) 

(2. 23) 

An = (-1)” A 
n 

(2. 24) 

so that amplitudes for the scattering of an odd number of pions vanish 

identically. 
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would now like to investigate the behavior of A 
4 

at the Adler point 

cy =Ly =(y 
S t u 

= 0. Putting (Y~ = LYE = (Y, Eq. 2. 10 becomes 

A4 = 2 Wcy) 
rc-4 r(-a + 112) 
r(-24 - 2 r(-2a+ 1/2) 

3 

+ n-a + f/a 
r(-a-t/2) + r(++ i/2) r(-2a) r(-2 cy + 1) 

3 
(2. 25) 

Using the logarithmic derivative ax) = d$ In r(x) and expanding to first 

order in (Y we have 

r(f/2 - 4 
r(l7 

EI 1 + a %?(1/2) (2. 26) 

r(-o 22a + 'r(i/2) 
r(-2m) = r(i/2 -4 

E 2 (1 + 2oln2 + a*(i/2) (2. 27) 

so that 

iizo A4(czs = at = a) = -8 In 2 + TI (2. 28) 

Thus there is a partial cancellation between the p, f and JT Ai trajectories 

at the Adler point. The value at threshold (crsg 0. 05 (Ye I 0) is approximately 

twenty times greater than Eq. 2. 28. We have not been able to demonstrate 

a similar suppression in the N point amplitude. In addition the value of 

A4 at the Adler point is uncomfortably sensitive to the way the limit is 

approached. For example if instead of the symmetric approach above, 

one first takes as- 0 and then LY t - 0 the amplitude diverges. 
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Because of this ambiguity and the ghost problem discussed above and 

because of the unsatisfactory features of the Chan Paton scheme for 

isospin, the amplitude proposed here is not completely acceptable. 

Nevertheless it has several obvious features in common with empirical 

observations that the conventional multi Veneziano model lacks. 

III. Inclusion of SU(3) 

In this section we discuss a possible dual interaction of a nonet of 

scalar mesons with broken mass degeneracy. Following the method of 

the appendix of Ref. 7, for any t7 > 0 we can construct the SU( 1, 1) algebra 

cc 

Lo = (3.1) 
m=o 

(m +%) bmtbm 

t 
L+ = Cm + rl)(m+ 1) 

I 

112 bm+l 
bm(3. 2) 

t 
L =L+ 

and under this algebra the field 

(3.3) 

B(~, $, [‘;- 1 :,jii2bmzm + ‘I2 (3.4) 

transforms covariantly with Js = - q/2. 

Following Bardakci and Halpern9 we would like to make b m an SU(3) 

triplet and write 



-14- THY - 9 

m 

Lo = 1 (m+;) bmt 
8 m 

(,,A” + c2 A )b 
m=o 

(3. 5 

1 t 
+ v)(m + 1) 1’2 bm+’ (p, A” +p 2A8) bm(3. 6) 

L =LJ (3. 7) 

However, we are not free to have arbitrary symmetry breaking. 

Requiring the operators of Eq. 4. 3 to satisfy the SU(1, 1) algebra gives 

us the non linear constraints. 

Besides the trival solution (I~ = (3, = m;02 = p, = 0 there are two 

solutions with non vanishing symmetry breaking 

(3. 8a) 

(3. 8b) 

(3. 8c) 

(3. 8d) 

n1 = m= p, ‘y2=m=p2 

al=m=p 
1 

LY2 =-m= p, 

corresponding to the two matrices 

A1 = mX” + WA8 

A2 = mx” - mk8 

(3. 9a) 

(3. 9b) 

(3.10a) 

(3. 10b) 
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Al and A2 can be seen to be the projection operators onto the space of 

non strange and strange quarks respectively. We would now like to 

build a dual amplitude based on the algebra 

m bl 

Lo = 
Lx 

(m+:)a mt,m + 
1 (m + 2)(bmtAibm + dmtAldm) 

m=o m=o 

+ 
m=o 

(m +% )(bmtA2bm + dmtA2dm) (3. Ila) 

m 

L+ = 2 m=. IL 1 

112 t 
(m + c)(m + 1) am+* am 

m 
+ 2 mzo u I 1’2 (bm+* 

t 
Albm +dm+’ 

t 
(m + r$)(m + 1) Aldm) 

m 

1 
t t (m+%)(m+l) i/2 (bm+l A2bm + dm+l A2dm) (3. Ilb) 

L = LJ (3. Ilc) 

The parameter E is to be taken to zero at ths end of all operations but n1 

and 
“z 

are constants to be determined later by the meson masses. 

The model of Ref. 9 is obtained in the limit t$- 1, A1+ 1, A2 + 0. 

However terms in A2 are important for a consistent dual theory with 

symmetry breaking. We now consider the spin zero SU(3) triplet 

B,(Z) =tl x0 1 r1,,2 
(m + 1) 

[,1’2(m + VI) At b: zm +ni12 
I-S 

+ rij2 Cm + 0,) A2 b: z 
m + n2/2 1 (3.12) 

rs 
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with z on the unit circle. 

Similarly 

Dr(z) = ii IO r1,2 ’ 
Cm + 1) 

kl”(m+nl) A1 CZ~+~“~ 
rs 

+ r1’2 Cm +q2)A2 dm srn + n2/2 
s I 

l-S 

(3.13) 

we now define the quark operator 

H,(z) = BrW + D;(z) (3.14) 

Commuting H with the SU(1, 1) generators of Eq. 3. 11 and comparing 

with Eqs. 1. 3 and 1.4 we see that Hr transforms with J = - nl/2 if 
S 

r=ior2andwithJ =-n2/2ifr=3. 
S 

The vertices for meson absorption are now written 

m”(k, z) = : .ik- Q(z) H+(z) AaH : 

Commuting with the generators we find 

I Lo’ @“(k, z) ] = - z d+ Ga(k, z) 

(3.15) 

(3. 16) 

[ L*> Q@(k,z) ] = - 
k2 acy 

2 

+ : .ik*Q H+ ‘llA1 + n2A2 
2 > xw 

SU( 1,1) covariance requires 

1 y qlA1 + “z A2Ja I 
= haA@ (no sum on (u) (3. 18) 
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Using Eqs. 3. 10 a, b and the familiar anti commutation relations of 

the X’s we find the following eigenstates of Eq. 3. 18 

with eigenvalues 

* 0 1 
BTJT : *r? 3 

d-z jx 

@K*, K”,xo A4 * i X5 A6 * i X7 

Jf ’ J‘z 

an : %Ep A0 + fi A8 
CDq’ : -vTyTxoi~~A8 

hQ = (Z/3 vi + 113 n2) + L h, - n 2) d8,, 
&- 

(3. I9a) 

(3.19b) 

(3.19c) 

(3. l9d) 

(3.20 

Substituting Eq. 3. 18 into 3. 27 we see that the vertex Qa transforms 

under SU( 1, 1) with 

k2 
Js(a) = - + - h 

Ly 
(3. 21) 

According to criterion IV of Ref. 1.) in order for particles with different 

quantum numbers to interact dually they must have the same Js. Thus 

if the mass splittings of the @C are octet dominated i. e. : 

kt = - rnz - 6 b m2 d8,, (3.22) 

we must have 

1)2-O71 
= -[3/2)6 m2 = m:- rnz 

Then Js becomes independent of CY depending only on the central mass 

m. and the parameters TV and rl 
1 2 

. 
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2 
m, 

Js= + (3. 24) 

The dual amplitude for the scattering of n scalar mesons with SU(3) 

quantum numbers (Y~cI~. . . (Y~ is according to 1. 7 

A 
@I@2 ’ ’ @n 

- 0 (arg zi - arg zi+l) 1 zi - zi+l ( 
-1-Js 

X 

“I (y2 
X <OIQ a . . ..a (3. 25) 

In the case of the four point function 3. 25 is easy to evaluate using the 

anti commutation relation 
i71rj 

{Brtz$, BJIzjj = eGrtvlJ Airs jzi- ~~1~‘~ 

iv 
“z 

+e 
2 

r(v2) A2 
I-s 

1 Zi - Zj / -‘12 (3. 26) 

although some may prefer to use the factorized form of Eqs. 1.15 and 

1. 16. With either method one finds for example in the case of TI’ x0 

elastic scattering, the st term in the amplitude takes the form 

A 
rbp.w(-CY~w) r(-a,b)m-~Tl(t) + n,) 

3333 = rc-a,,(s) - ~Tlw - r(-avr(s) - aT(t) + Q,,) 

r(-~,(t))r(-LYT(S) + v,) 

r(-~TI(s) - eT(t) + v,) + 

r(-~n(s) + t71)r(-(Yli(t) + rll) 

u-a,,(s) - UT(t) + 2 v,) 
(3. 27) 

r(-aTb) - vl)r(-a,i(t) + tl,) r(-oliib)+ rll)r(-~T(t) - u,) 
t + 

r(-(YTT(.s) - a,r(t)) r(-a,,(s) - arm) 
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If we choose nf = i/2 we recover the ~TIT amplitude of Eq. 2. 10 (apart 

from some factors of 2 due to the trace of Ai. ) There is a leading 

trajectory one half unit above the TI trajectory. The isospin content 

of the present model is however entirely different from the model of 

the preceeding section which relied on the Chan Paton formalism. As 

can be seen by examining Eq. 3.25 for ~l~l scattering in other charge 

states the p, A2 trajectories decouple from the model leaving only 

isospin zero trajectories (w , f). By taking nf = 1 we can move the leading 

trajectory to one unit above the TI trajectory thus obtaining an isospin 

zero Pomeranchuk trajectory as in Ref. 9. 

In the case of scalar Kv scattering Eq. 3. 25 yields 

A 
r(-ap)r(-~Tl(t)) r(- (9 + II l)r(-O?l(t)) 

+o~-o = 
Kn K” 

r(-ap-~nw - r(-~K(s) - OIT(t) + ‘I~) 

n-a, 
+2 K! 

S) + f)l)r(-~n(t) - v,) 

r(q) - CT(t)) 

where 

2 

mK 
@I?)=- -?-- 

+ 5 = 0 (s)+ 
?I - 1)2 

ll 2 

(3. 28) 

(3. 29) 

(+ W) 
If VI = l/Z, the asymptotic behavior is s P as desired and poles appear 

;‘- 
in the s channel at the mass of the K and its recurrences with 

2 2 2 2 
m aI; - m = m -m 

K P K TT 
(3.30) 
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However the parent trajectory in the K family decouples. Thus one 

might prefer to take n1 = 1 and adopt the Pomeranchuk interpretation 

of the leading pole. 

By examining scalar K+K+ scattering one finds the existence of 

exotics on low lying daughter trajectories as expected. 

The general four point function can be written as follows. 

A 
(Y1CU2a3CY4 / 

Jf E& , zi-zi+l, -l+qf-+ 0 (arg zi-arg zitl) 

i=l 1 

fif) Iz.-~.j~~‘~j 
i=l jri+l l J 4 

where 
4 

T4 = < Oln: H+(zi)haiH(zi): j O> 
i=l 

We adopt the notation 

ak cyn 
A . A ‘ni 

with 
(Cij)rs = { Br(Zi),BJ(aj ) } 

(3. 31) 

(3. 32) 

(3. 33) 

(3. 34) 

Then 

T = 
4 < 1234> + < 4321> 

- < 1243> - <2314> - <3421> - <4132> 

+ <12><34>+ <23><41> + <13><24> (3. 35) 
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The cyclic symmetry of the four point function is evident from Eq. 3. 31 

and 3. 35. We assume that the cyclicity of the higher N point functions 

can be similarly demonstrated although we have not developed a general 

proof of this. 

Finally we note that we have taken the field H(z) to be spin zero 

for simplicity. It is natural of course to make H a Lorentz spinor 

in which case one could form the pseudoscalar octet 

@@ = : e 
ik. Q - 

Hy5 
Aa H : (3. 36) 

The SU(i, 1) transformation properties Gcu are not altered by this 

generalization but the scattering amplitudes above are modified by the 

appropriate traces of y matrices (e. g. , in the expression 3. 33 each A 

matrix is multiplied by Y5. ) The odd N point functions are then identically 

zero. Additional ghosts appear in the model due to the 3rd and 4th Dirac 

components of the b’s and d’s, In view of the fact that the SU( 3) breaking 

0 
mechanism discussed in this section forces n n degeneracy and the canonical 

quark model mixing angle (Eqs. 3. 19 and 3. 22) it does not seem worthwhile 

to pursue this possibility without more drastic modifications of the model. 

It is interesting however that phenomenological attempts to construct a 

dual rr”n scattering amplitude have also been forced to assume a TT’~ degeneracy. 

This fact makes it additionally interesting to try to construct from the group 

theoretical point of view a dual model with a different symmetry breaking 

mechanism in which 11o and n do not have equal masses. 
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