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ABSTRACT 

A wave equation for free fermions is proposed based on the structure of 

the dual theory for bosons. Its formal properties preserve the role 

played by the Virasoro algebra. Additional Ward like identities, compatible 

with the equation, are shown to exist. Its solution lie on linear trajectories. 

In particular the parent is shown to be doubly degenerate, but these 

solutions lie on different sheets of the cut j-plane. 

a Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 



-2- THY - 8 

INTRODUCTION 

In spite of its obvious theoretical appeal, the dual model’ has been 

denied full acceptance (credibility) because of its failure to include 

fermions. In this paper we present an extension of the model to encom- 

pass half integer spin states by making use of a structure evident in the 

dual theory of free bosons2. Namely, we found that the following view 

of duality led to no contradiction with existing results: Each “free” 

boson appearing in the theory is a state of a complex system. Its 

structure can be parametrized in terms of an internal motion which is 

periodic in an internal time coordinate so that each observable of the 

system is the average over a cycle of the internal motion of suitably 

generalized operators. In this way operators appearing in the 

description of point particles in conventional theories must be thought 

of as averages over some internal motion when applied to a hadronic system. 

The system then becomes a point particle in the limit of the internal 

cycle goingto zero. These precepts are illustrated by their application 

to the bosonic case in Section I. We use these guidelines to introduce a 

generalization of the Dirac matrices and postulate a Dirac wave equation 

for the free fermionic system. Its formal properties are studied in 

Section II. The final section will be devoted to a detailed study of its 

solutions. 
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I 

In order to set the notation and illustrate the ideas behind our 

interpretation, it is desirable to first consider the (already known) free 

boson theory. The free hadronic system is described in terms of an 

3 internal motion generated by the Nambu Hamiltonian 

1 m 
Hg = i -I [ ,(n), ,0-d + w 2 

nq 
00. q(n)l 

n=o 
(1-l) 

with 

w 
n+l - w* 

‘W n = 0,1,2.. . (I-2) 

and the normal mode coordinates are four-vector operators satisfying 

the usual commutation relations 

, q(n), ,(m) - 
a p ] - 1 pb”!,p(;+ = 0 

I dm’ a ’ 
p(i)] =-ig 

4 
hrnjn m.n = O,i... (I-3) 

where we use g 
4 

= (1, -1, -1, -1) for the Lorentz metric. The 

P = 
P c 

ph) (I-4) 
P 

n=o 

internal system carries a total momentum 

m 

corresponding to a coordinate 
m 

Qr = 
c 

,(n) (I-5) 
P 

n=o 
The variable r which describes the evolution of the internal motions is 

introduced by means of the Heisenberg equations 

[ HBs f 1 = i $ (I-6) 
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where f is any operator. It is important to note that in the limit w -0, 
0 

the lowest mode becomes translational while the internal motions generated 

by the higher modes become periodic. We consider this to be the 

physical limit. It is our observation that in this limit all observables of 

the system can be written as averages over the period of internal motions. 

We take the fundamental cycle of the internal motion to be the interval 

so that the average of an operator A(T) is defined as 

+“/&I 

<A(r)> 3 e 

/ 

dr A(T) 

-“/Cd 

(I-8) 

In particular this means that each operator appearing in usual theories 

must be expressible as the average of a more general operator over the 

internal motion of the system it describes. We now proceed to give several 

examples The momentum of the boson is 

pP 
=<P (T)> 

P 
(I-9a) 

while its position is 

x 
P 

= <Q&T)’ (I-9b) 

We thus call Pp and Qp the generalized momenta and position respectively. 

The generalization of the Klein-Gordon operator is obtained by this 

correspondence principle 

cp 2 _ m2) = <p>.cP> - m2-- cp.P> - m2 (I-IO) 
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The solutions of the generalized Klein-Gordon equation are the states of 

the free bosonic system. This equation is of course the usual one. 

It should be noted that we require normal ordering of the periodic modes 

to eliminate the zero point energy. 

Similarly the operators 

=<QP 
(I p - QpP,’ (I-il) 

explicitely satisfy the commutation relations of the Lorentz group. An 

amusing application of this.correspondence principle is to consider the 

usual ghost killing conditions and its generalization 

0 = p.a(n) = <pp> <e 
iw no 

Pp> - <P2 eiwnT3 = 0 (I-12) 

which can be explicitely seen to be exactly the condition found to hold by 

Virasoro4. We stress that in the absence of interactions, this condition 

is independent of the mass. 

It should be noted that the operators 

LB I <e 
awns 

*n P2(,) > (I-13) 

generate an infinite-dimensional Lie algebra and play a central role in 

the construction of suitable interaction terms5. Before proceeding to 

the fermion case we mention the formula 

(T-T’)], mod (% ) (I-14) 

which we shall use in the following section. 
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II 

In close analogy to the usual procedure where Dirac matrices are 

introduced to describe half integer spin point particles, we keep all 

the features encountered in the bosonic case and define over the space 

of internal motions a generalization of the Dirac matrices, r&( 7). We 

require that its average over a cycle of the internal system be equal to 

the usual Dirac matrix6, namely 

<rp) > = y (II-I) 
CI 

The equation 

{rp(4, T?~(~*)) = ZgrV6[~(~-~C)l, mods (11-Z) 

for the anticommutator seems to be the simplest one consistent with that 

obeyed by the y’s. Similarly we require 

rptT)+ = Y, rp(T) Y, 
(II -3) 

on the grounds of simplicity. These last three requirements are sufficient 

to determine the explicit form of rP(T) in an almost unique way. This is 

done by remarking that rp(r) can be written, by assumption, as a Fourier 

series over the fundamental cycle. The Fourier coefficients are then 

determined by taking various projections of Eq. (II-Z) along the components 

*iwnr 
e and integrating over T. Then requiring (11-3) to hold suffices to 

set all the higher Fourier coefficients. We find 

co 

rc,tT) = YP + ioo T 6 
P 

+ ifly, 
c 

[ bb) t ei”nT 
P 

+ bf.fl e-iwnrl (H-4) 

n=l 
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where the b’s are operators obeying the anticommutation relations 

{b(z), b(7) } = {b(F)+, b(F)+ 1 I O 

{ b(F)> b(T)+ } = -glrV 6 n* m n, m = t, . . . (11-5) 

In what follows we shall assume that 6 )I is not singular in the limit 

wo-‘o, and we thus neglect it. We emphasize that these simple require- 

ments lead to a unique form. Note the appearance of y5 which is essential 

for (11-2) to hold since it is the only 4 x 4 matrix to anticommute with 

al1 yP’s’ 
We propose the following generalization of the Dirac equation 

[<rF(r)PC,(T)> -ml IQ> -0 (11-6) 

as suggested by our correspondence principle. In terms of creation 

and annihilation operator it is given by 

co 

Y. P - m - ~5 
c 

w [ a(n ) t . ,(n) _ b(n 1 t. .(n) I 
n 

n=i 

(11-7) 

It is easy to see that one recovers a familiar spectrum. Use of the 

anticommutation relations (II-2), the periodicity of P 
Ir’ 

and of Eq. (I-14), 

yields 

[cr.p><r.p> - m’] 1 Q > = [<P2> -,+cr.k> -m2]j*> -0 U-8) 

where the dot denotes differentiation with respect to T. This expression 
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explicitely reduces to 

co 

(p2 - m2 + w 
c 

n[ a 
(n)t.a(n) + ,(n)teb(n) 

I IQ > =o 

n=i 

(H-9) 

which leads to linear trajectories. 

The consistency of our interpretation requires the relativistic 

Hamiltonian to be the generator of the internal motion. Indeed we see 

that 

c l 
-t<r.r> , rp CT) 1 = i T rp tT) (11-10) 

by direct use of Eq. (11-2). In analogy to the usual Diras equation, we 

check that the operators 

M: 
=$<rr> 

@ B 

satisfy the Lorentz group commutation relations and 

(11-11) 

[MS2 rJT,l = i(gpr raiT) - gaprpcr) ) 

where [ a’s and b’s are taken to commute] the total Lorentz generators 

M -MF +M 
B 

4 4 4 
(11-13) 

leave the generalized Dirac operator invariant, thereby showing that 

they are the relevant representations of the Lorentz group acting on the 

solutions of (11-6). 
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We next introduce the operators 
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LF Z-i<. 
*iwnT 

*n 4 rptT);;ItT)> 

which obey the infinite dimensional Lie algebra 

F 2 2 
= w(m-n) L 

m+n 
-nw 6 

8 n, -m 

so that we define the generalization of the Virasoro operators by 

L = L*t + AL 
B 

in l n 

(11-14) 

(11-15) 

(H-16) 

It is clear that the condition 

Ln(*> = 0 (U-17) 

is compatible with the equation for the spectrum i. e., the square of 

the generalized Dirac equation, and that it holds for any mass. Another 

Ward-like identity is obtained by considering the operator 
*iwnr 

F =< e 
+n rc,(T)P,(f) > 

which obeys 

[ Ln, Fm] = $ w (2m-n) Fn+m 

{ Fn, Fm> = 2 Ln+m 

These are now used to obtain compatible new relations. Now 

0 = Fn(Fo-m) ) a> = [ 2Ln - (F 
0 

-m)F nl IQ> 

so that we have an additional identity, namely 

(11-18) 

(II-i9a) 

(II-i9b) 

(II-20a) 

Fnj*> = 0 (II-2Ob) 
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This one can be seen to be the generalization of p. b (n) \Ir=O according 

to our correspondence principle (ory. a 
(n) = 0). The interaction terms 

must have specific transformation properties under the algebras (U-15) 

and (II-i9) for these equations to hold for the system in interaction. 

III 

We now turn to a discussion of the solutions of the equation. It is 

convenient to introduce the notation 

m 

N= G[ a 
(n).t b(n) _ ,(n).t .(n) I (M-1) 

Then the generalized Dirac equation is 

[Y-p-m- y5Nl Ig> =o (III-Z) 

The spectrum equation (11-9) shows that in the occupation number space 

spanned by the a’s and the b’s the masses of the excited states obey 

2 2 
ml = m f lo 1 = o,i,... (111-3) 

It is easy to show that we can write the positive energy solutions corres- 

ponding to the L th mass level as 

I qw ’ =2& I m + <l?*P>] ( U(i)(k) > (i= i.2). (111-4) 
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with 

N2 1 U;)(k) 3 = -fw 1 U(;)(k)> i = i,2,3,4. (111-5) 

and 1 U:)(k) > is a 4-spinor operator with non zero element in the 

ith column only. The negative energy solutions are 

1 *(;)(k) ’ = d& 1 mt < r. P > ] 1 U(:)(k) > (i= 3,4) (111-6) 

The norm of these states is positive only when the space components (or 

an even number of time components) is involved. We proceed to give 

several examples. 

P =1 

we have two candidates 

1 uq ) - 1~ k > - .(f)te-ik.q ( 0 > ,(i) 
P 

I 
Up;(k) > = ,(pi)te-ib 1 o > +i) 

(111-7) 

The corresponding states IS’.!;> and Irk y: > have spin 312 and l/2 

components as can be checked by applying on them the Lorentz generators. 

Hence the parent trajectory is doubly degenerate. As discussed earlier, 

the spin i/2 components can be removed by requiring Eqs. (II-17 and 

11-20) to hold. 

f=2 

There are four candidates 
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1 U:\(k) > -Aa( a(;)te-ik.q 1 o, U(i) 

1 U!2iJ(k) > = &(aFIt bylt+ ,(i)t b(i),) .-ik. q 1 o, U(i) 

] U!;(k) > = af’ I .-ik. q 1 o> U(i) 

1 LJ;y (k) > = by .-ik.q Jo > u(i) 

so that we have two spin 512, 4 spin 3/2.and six spin i/2 states. Some 

are eliminated through the Ward-like identities. 

In the general case, we have 

1 II >E 9 [ b(j) t ]‘j .-tk. q 1 o > U(i) 
I 

(111-9) 

where (0 

1 = 

L 

(jn. + jc.) 
J J 

(III-IO) 

=I 

and<. =Oori. 
J 

It follows that there are two spin J = (1 + i/2) positive energy 

solutions at this level (those with n 
f 

= 1 and those with n = 1 -1 E 
1 , 1 =i) 

so that the parent trajectory is doubly degenerate. 

Before interpreting this degeneracy, consider the propagator 

SF(P) = 
1 

<r. P >- mtie 

5 <Imp> tm 

Lo -m2 + 2iem 
(III-ii) 

Notice that, unlike usual infinite component equations, the imaginary 

part is positive definite, thereby rendering the sign of the mass matrix 

7 unimportant for considerations of extra “parity ghosts” . Also, for en 
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mass shell states, the numerator is positive definite, 

A possible explanation of the degeneracy is presented by considering 

the possible expectation values of the matrix y5N between the states on 

the parent trajectory. We find that for positive energy solution, it has 

two eigenvalues 

(111-12) 

It is seen that the sign can be accounted for by taking one solution to 

lie on the second sheet of the cut J-plane. Finally we wish to say that 

the degeneracy structure of the solution is comparable to that encountered 

in the boson case. 

IV. CONCLUSION 

Although we have not presented a treatment of the system in interaction, 

we hope that the wave equation will prove to lead to such a formulation 

in the near future. At present we can only understand how to introduce 

the electromagnetic interaction of our base systems by means a minimal 

coupling scheme. However the more important self interactions are still 

a mystery to us. 
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