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ABSTRACT 

The qualitative behavior of large -angle scattering by a rotationally 

invariant opticaI potential is investigated using the WKB approximation. 

It is shown that the strong s dependence exhibited by elastic proton- 

proton scattering requires an energy-dependent potential. The source 

of the inaccuracy of the Eikonal approximation, at  large angles, is 

found by comparing Eikonal phase shifts with those given by the WKB 

approximation. 
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I. INTRODUCTION 

At high energy, near forward elastic proton-proton scattering 

shows the characteristics of diffraction by a smooth absorber: 

10 Re f ( O ) / ~ m  f ( O )  and oelastic total a r e  both much less  than one, and 

do/dn (s,  t )  is a strongly decreasing function of it 1 .  The optical model 

1 
proposed by Serber encorporates these properties in a natural way 

and provides a qualitative explanation of the t dependence of large- 

angle proton-proton scattering. The s dependence of do/dQ ( s ,  t )  r e -  

mains somewhat mysterious 

If the observed large-angle cross  section is  reproduced with a 

symmetric version of the amplitude: 

 AS"^ (-t )W12 = A (2k) 
v +w W 

(sin 01") , (1 . * I  

we find (see Section VII): 

v = - 5.75 w = -2.25. 

In other words, at  large angles, the s dependence is  actually more 

significant than the t dependence. But i f  Serber 's  model is  solved by 

the Eikonal approximation (using an energy-independent potential), v 

automatically becomes 0.5, which seems to imply that to reproduce 

(I I ) ,  Serber ls  potential must be made a function of s ,  s o  that, in 

effect, the s dependence of large-angle scattering i s  assigned to some 

unknown dynamic mechanism. 

Recently, however, it has been shown that the Eikonal approxi- 

mation i s  extremely inaccurate at  large angles. For a particular 



potential studied by Avison, the Eikonal differential c ross  section is 

small by as  much as  a factor of 1000.  It i s  conceivable, therefore, 

that some energy independent potential, i f  solved accurately, might 

produce a c ross  section which does exhibit the energy dependence r e -  

quired. 

Serber 's  optical model interprets the t dependence of the dif- 

ferential c ross  section as  the result of a spatial distribution of absor-  

ber ;  perhaps the s dependence of the differential cross  section may 

also be interpreted in this way, rather than a s  a result of the energy 

dependence of the absorber itself. 

In order to explore this possibility, we shall reconsider Serber 's  

optical mode1 using a number of techniques based on the WKB approxi- 

mation. Unfortunately, it is quite difficult to produce a rigorous bond 

on the accuracy of these procedures and therefore they will be tested 

by comparison with Avisonls numbers and by comparison with each 

other. In the process we m i l l  find the source of inaccuracy of the 

Eikonal approximation at  large angle. 

The final result of all this will be that Serber 's  equation cannot 

account for (1.1) using any "reasonably smooth'' potential of the form 

unless r j  and L~ themselves depend on s .  In a subsequent paper, how - 

ever ,  we will show that optical potentials of a different sor t  



("Lorentz contracted") do provide an explanation of (1.1). In addition, 

once the range and amplitude of the contracted potentials a r e  chosen to 

reproduce the line dv/df2 (k,  9 0 ° ) ,  a pair of ripples automatically ap-  

pears in agreement with the observations of Allaby et  al .  , 6,7 (kL" 1.1 

GeV, 1.9 GeV). 

11. THE SERBER MODEL 

Serber ' s  optical model is governed by the center -of -mass equa - 

tion: 

which describes the scattering of a single Klein-Gordon particle by a 

spherically symmetric absorber, introduced as  the time component of 

a four vector to insure: 

l im ut(E)> 0. 
E --m 

Since large-angle proton-proton scattering occurs at a much greater  

rate than similar two-body reactions not involving protons, o r  involving 

only one proton, it seems reasonable to suppose the proton has a hard 

core  of some sor t .  Serber therefore chooses V singular at the origin: 

We will res t r ic t  ourselves to  Eq. (11.1) for spherically symmetric 

potentials which go a s  l / r  near the origin and a r e  of finite range. The 



coupling constant is assumed rea l ,  and V ( r )  is assumed r e a l  when r 

is on the r e a l  axis .  If we wr i te :  

P ( 0 )  can  be  nominally s e t  equal to one. We will a l so  a s sume  P(r) has  

neither cuts  nor  poles which influence the scat ter ing.  

111. WKB APPROXIMATION 

F r o m  the par t ia l  wave equation: 

we extract  the WKB J phase shift  
3 

The function f (8 )  is considered in AppendixA. Its analytic propert ies  
0 

-r 
a r e  studied in detail for the c a s e  P(r)  = e . If q V ( r O )  is sma l l  we ex -  

pect F0 - ro .  The analytic cha rac te r  of 6 is c a r r i e d  largely by f (1 ) .  P 0 



since 6 will be analytic at  any point 1' at which VIFO(l)]  is finite and 
1 

f (1) is analytic. 
0 

Four different techniques will be considered: 

1. The WKB approximation without any simplifying assumptions 

2. An asymptotic form of the WKB approximation, correct  when 

k is large (fixed 8) 

3. A crude form of (1) correct  when r )  is small 

4. An asymptotic form of ( 3 ) .  

Approximations ( l )  and (2) will be developed for all potentials of 

form (11.2) and (3)  and ( 4 )  wi l l  only be considered for the choices 

IV. ASYMPTOTIC FORM 

By use  of the Watson-Sommerfeld transform, we will be able to 

show that when k is large,  we need consider only a simplified version 

of (111.2). The scattering amplitude may be written: 

P , ( - c o s 8 )  
I A -  5 

f(8) = - 2k cos r A  AdA.  

The contour C circles each positive real  pole of l l cos  TA once in the 

clockwise dir,ection and does not include singularities carried by the 

phase shift. If we assume 6A- ,  is  an analytic function of A in a s t r ip  
2 

which includes the real  A axis and that P(r)  is  bounded in a s t r ip  

which includes the rea l  r axis, we can then deform C a s  shown in 



Fig. 1. But a s  k - a, GO ( I )  - ro ( 1 )  = A/k ;  thus, if we allow cu to grow 

a s  cu &, for large k the horizontal contours will still be in the region 
0 

in which P ( r )  i s  bounded. It i s  reasonable to assume that 6 1 i s  also A - r  
bounded in this region, and therefore using the relation: 

we see  that the contribution of the horizontal contours will go to zero 

a s  e -'@0lJi;. If the vertical contour contributes a power law in k, the 

hori7,ontal contours can be ignored. As k becomes large, how~ver ,  

A / k  -. 0 uniformly on the vertical contour; therefore, we need only 

determine the behavior of - in the limit A / k  - 0. 
2 

We define the variable A  = P + $ and decompose 6 into three parts: 

P I ( - c o s 8 )  
A - ,  

cos VA 
< Ae 

-6ImA 



and then decomposes 6 again: 
1 

D is the contour shown in Fig. 2. 

The square roots a r e  given positive real  part above the cuts, 

which extend from the two branch points to + a. 

The limit of 62 a s  A/k  - 0  is finite. The limit of the first deriv- 

ative of 6 with respect to A/k  is also finite: 
2 

Therefore by Taylor's theorem, for every E > 0, there exists a 

neighborhood N of 0, such that: 

Using the expansion of K o ( x )  near x = 0, we have: 



&5' 
on the other hand, can  be neglected entirely for la rge  values 

of E. The substitution r = y / E  gives : 

which must approach 0  a s  E + m since P ( 0 )  = 1. 

6 is given exactly by the formula: 
4 

The preceding resul ts  combined yield the following expression 

for the WKB J phase shift: 



This formula includes all terms which do not approach zero a s  k ap- 

proaches infinity and A/k approaches 0. 

The phase shift has branch points at A = +iiq and A = *nm/k so  

that the contour of Fig. 1 should actually be the path shown in Fig. 3. 

This modification does not make expression (IV.3) any the less  useful, 

however, since a s  k - m, nm/k + 0, and the entire contour enters the 

region in which (IV.3) applies. In fact, a s  k - m the contribution of the 

cut approaches zero faster (by one power of k )  than does the total 

amplitude. 

The validity of (IV.3) depends only on the smoothness of the 

function P(r) .  The value of k a t  which the scattering amplitude given 

by (IV.3) reproduces the WKB to within a few percent will be controlled 

by quantities of the form: 

The scattering amplitude given by (IV.3) depends on only two free 

parameters,  iq and 0. It will therefore be possible to determine all the 

information we need by evaluating the Watson-Sommerfeld integral nu- 

merically. It remains worthwhile, however, to consider a less  ac - 

curate form of the WKB approximation, which leads to closed expres - 

sions for the phase shift and scattering amplitude. Along the way we 

will obtain a c learer  picture of why the Eikonal approximation fails at 

large angles. 



V. POWER SERIES 

Expression (111.2) can be expanded to produce a power ser ies  in r ~ :  

The f irst  two coefficients a r e :  

(1) J [ r V ( r ) / m ] d r  6 (A) = F l i ;  
E 

( 2 )  
2 3 2 

r V  r V  
6 ( A ) = - , , -  d r .  

r - -  

Contour E is shown in Fig. 4. If V is a Yukawa potential (energy unit 

= a )  we find: 

6'') ; - 
A 

K (u)du - - 2 2  k K~(F). 
- 
k 

The linear t e rm n6(1) is just the phase shift given by the Eikonal ap-  

proximation. The quadratic term,  however, is not included in the 

Eikonal phase shift, and for a potential singular at  the origin, this 

t e rm contributes a singularity at  A = 0 which has a drastic effect on the 

large -angle scattering amplitude. 

When A is  close to 0, (V.2) leads to the formula: 



y = Euler's constant. 

It is worth noting that the pole which appears in the phase shift 

given by (V.2) and (V.3) does not appear in the exact WKB phase shift, 

nor in (IV.3). Its source may be found, however, by expanding (IV.3) 

a s  a power se r ies .  The te rm:  

becomes : 

L 

- -  = q  - i... 
4 A 

The pole a tA = 0 in (V.2) represents the weak coupling limit of the 

effect of the branchpoints a t  A = + i q .  These branchpoints must also 

be present in the exact solution since the radial equation corresponding 

to (II.$): 



i f  solved by a power se r ies :  

leads to the indical equations: 

with branchpoints a t  A 5 t. + = +irJ 

We now make the approximate substitution: 

(see Appendix B),replace the angular momentum sum by an integral, 

4 
and rotate contours across the complex plane. The scattering ampli- 

tude becomes : 

But since: 

i f  either q o r  sin 0 1 2  is  small ,  the Bessel functions can be conveniently 



(2) expanded as  power ser ies .  The leading term of the ser ies  for H , 

added to the f irst  t e rm given by K, duplicates Serber 's  asymptotic form 

for the Eikonal [actually there is a small  difference caused by (V.4)]. 

For weak coupling or  small angles, we expect the Eikonal to be fairly 

accurate, a s  in fact is the case.  At large angles for strong coupling, 

however, higher terms in the power se r ies  of the Bessel functions con- 

tribute and the Eikonal becomes inaccurate. These terms a r e  the r e -  

sult of the qL coefficient of (V. l )  which produces the essential singu- 

lari ty in the partial wave amplitude of (V.3). 

We note that if q 2 1 the te rm H ( ~ )  dominates the large -angle 

amplitude. If I3 is fixed: 

But at  fixed k, i f  q Z 1 a i n  ~ H ( ~ ) l / a a n  q is small and therefore: 

We have the approximate relationship: 

These equations will turn out to be rather useful. 



VI. COMPARISONS 

As mentioned earl ier ,  Serber's proton-proton potential: 

has been solved exactly by Avison whose results disagree with the 

Eikonal differential cross  section, at  large angle, by a s  much a s  a 

factor of 1000. 

Using the Watson-Sommerfeld contours shown in Fig. 5, both the 

WKB (111.2)- -and its asymptotic form (IV. 3)--reproduce Avison's scat  - 

tering amplitude quite reliably. In obtaining the large -angle scattering 

amplitude corresponding to (111.2) we use the Watson-Sommerfeld trans - 

form rather than a partial wave summation, since at  large angles a 

partial wave sum involves a great deal of cancellation and is therefore 

quite sensitive to small e r ro r s  in the phase shift integral. 

The scattering amplitudes given by the WKB approximation, and 

i ts  asymptotic form, a r e  compared with Avison's result in Table I 

(klab = 11 GeV) and Table I1 (klab = 30 GeV). The disagreement between 

the WKB amplitude and Avison's is less  than a factor of four, which, 

for a qualitative study of the sor t  intended here ,  is more than sufficient. 

Even this e r ro r  occurs only at  backward angles and is therefore masked 

by the forward amplitude when the symmetrized c ross  section is  

determined. It is worth noting that the energy dependence at  fixed angle 

of both the WKB and its asymptotic form, reproduces Avison's result to 

within a small  factor: 



do - (11 GeV, 90")  
dQ i = 13.2 
do - 
dQ 

(30 GeV, 90")  
Avison 

do - 
dQ (11 GeV, 90') - 18.6 
do - (30 GeV, 90') dQ J WKB 

do - 
dQ 

(11 GeV, 90") 

do I = 16.6 
- (30 GeV, 90') dQ 

ASYM. WKB 

Figure 6 compares  the th ree  differential c r o s s  sections a t  11 GeV 

Figure 7, which corresponds to  30 GeV, shows only two lines s ince a t  

this  energy the complete WKB is indistinguishable f rom i ts  asymptotic 

fo rm.  It is c l e a r  that the WKB approximation reproduces the angular 

dependence of the differential c r o s s  sect ion quite reliably.  

If rj and cu a r e  r a i sed  we might expect the asymptotic form to b e -  

come l e s s  accurate .  However, even for the choice rj = 1.5 and 

cu = 0.467 GeV the scat ter ing amplitude given by (IV.3) is within 15% of 

that given by (111.2) a t  both klab = 11 GeV and klab = 30 GeV, for sca t  - 

t e r ing  angles g rea te r  than 50". 

Expression (V.2) reproduces Avison's resu l t s  just a s  dependably 

a s  does the WKB. If rj is much l a r g e r  than 1,  however,  (V.2) becomes 

inaccurate  s ince  powers of r) g rea te r  than two become significant. Fo r  



the choice q = 3.687 and u = -0.3853 + Pn GeV (a Yukawa potential with 

cu = 0.382 GeV assigns this value to u). (V.2) gives differential c ross  

sections larger  than those of (IV.3) by a factor of 10. A partial wave 

summation is convenient for calculating the scattering amplitude cor - 

responding to (V.2) since the necessary Bessel functions can be rapidly 

evaluated to great precision. 

The asymptotic form of the scattering given by (V.2), expression 

(V.5), agrees with (V.2) fairly well. Table I11 compares the two a m -  

plitudes for various values of q and CY a t  k = 30 GeV, 9 = 180". For lab 

8 = 90°, the agreement is only slightly worse. 

VII. CONCLUSION 

We wi l l  now apply these methods to the problem of proton- 

12 
proton scattering. It should certainly be possible to fit the scattering 

amplitude given by (IV. 3) to the energy dependence of 90O scattering: 

the normalization of the amplitude corresponding to (IV.3) can be con- 

trolled by choosing the quantity u, and the energy slope fixed by choice 

of q (since most of the energy dependence of the phase shift is  carried 

5 .  by the te rm proportional to q In  k).  In fact, the 90" scattering 1s 

reproduced quite accurately on the internal 8 GeV - < klab 5 31 GeV by 

the constants : 

q 3.687 u = -0.3853 + In GeV. (VII.l) 

The angular slope given by these parameters, however, is  much greater 



than observed. At 60", for  example, the c ross  section predicted by 

(VII.l) is greater  than observation by a factor of 10. And i f  either q 

o r  u is altered, to reproduce the correct  angular dependence, the 

energy dependence becomes incorrect,  since a !n [do (k, 90°)/dS2 ]/a Pn k 

is a monotonic function of 1 7 ,  and do (k, 90°)/dS2 is a monotonic function 

of u. 

We must conclude no "reasonably smooth" potential of the form: 

can account for the observed scattering unless q and cu a re  themselves 

functions of s .  By "reasonably smooth" we mean a potential for which 

the quantities 

a r e  smal l  enough that the asymptotic form is reliable in the region 

8 GeV 5 klab 4 30 GeV. 

By comparing (V.6) and (V.7) with the experimental data we can 

get some understanding of why energy-independent potentials fail. If 

12 
the observed data a r e  fit to a symmetrized differential cross  section 

calculated from the amplitude: 

~ ( 2 k ) '  + 

9 w 
(sin Z )  

we find: 



The choice v + w = -8 requires rl = 3.5 (V.6), but w = -2.25 implies 

0 = 1.0  (V.7) .  In other words, (VII.2)violates 07.8). 

If the scattering given by expression (V. l )  is compared with ex-  

periment, our conclusion remains the same.  The c ross  section cor -  

responding to (V.l)  for either of the potentials: 

invariably shows l e s s  energy slope than experimentally observed 

whenever the observed angular slope is correctly reproduced. 

APPENDIX A 

The function r (A)  defined by the equation: 

can be evaluated by performing the iteration: 

i f  I) is sufficiently small and P(r)  is well behaved (we assume also that 

P is an entire function of r ) ,  since according to the contraction mapping 

1 0  
fixed-point theorem, the equation: 



has  a unique solution in  any region Q such that 

X ,Y E Q -+ I F ( x )  - ~ ( y ) l  5 a. /x - Y I  

CO 
and this solution is given by x where: 

for any point z c  Q. 

The scat ter ing problem studied by Se rbe r  is 

-a 
P(r )  = e a. = 0.2646 GeV 

If energy is measured  in  units of a. a t  klab = 11 GeV then: 

Using this collection of information, i t  can  be shown that a region Q A ' 

A/k E QA, exis ts  fulfilling condition (A.4) and s o  forcing the convergence 

of i terat ion (A.2) i f  A is contained in the t e r r i t o r y :  



The square root must be evaluated according to the convention: 

unless A i s  very close to the imaginary axis, in which case either 

choice of the sign of the square root, adhered to consistently, will yield 

a convergent series.  

The function r (A) is  differentiable and hence analytic if: 

which i s  true at all points in region (A.8). We can also prove that 

r (A) can be continued to almost every point of the positive half plane 

by considering the function: 

r ( A )  is defined by: 

F [ r ( A ) , A ]  = 0.  (A.12) 

If (A.10) i s  fulfilled we have: 

11 
And so, by a well-known theorem, we have the result that if r (A) 

exists at  AO and if (A.10) is fulfilled at  this point then r ( A )  exists and 

i s  analytic in an open region of A . Thus all points on the frontier of 
0 

the maximum region to which r (A) can be extended violate (A.lO). 



(A.lO) must definitely be violated at least once since i f  A is  carried 

along a closed loop through the shaded region of (A.8) beginning and 

ending at  0, the function r ( A )  does not return to its original value, and - 
s o  there must be at  least one branch point somewhere in the shaded 

region. By using the fixed-point theorem on (A.10) it can be shown, 

however, that there is  exactly one such point, ?, violating (A.lO) and 
.. 

therefore a t  most one A at  which r (A)  cannot be defined. But of course 

for this value of A we already have a r (A) ,  namely r^, thus r (A)  is de-  

fined over the entire region Re A > 0 and is  analytic a t  all points in 
.. 

this region except A. 

To first  order in n we have: 

APPENDIX B 

The approximation: 

has been studied in some detail. If A(kp - 1 1 2 )  is analytic in p at  

p = 0, and the lead te rm in this power se r ies  has exponent less  than 5, 

the e r r o r  caused by (B. i ) ,  for large t ,  is  less  than a factor of 2. If the 

leading exponent is  1, at  large t (B. l )  will introduce no e r r o r s  a t  all .  

The additional e r ro r  caused by 



is  a factor of G i f  the leading exponent is 1, 1.06 i f  the leading expo- 

nent is  3, and corresponding less  i f  this exponent is greater than 3. 

Since the partial wave amplitude given by (V.2)  has an essential 

singularity at  p = 0 the significant exponent here,  in effect, is negative. 

At 1 8 0 "  the Watson-Sommerfeld version of the asymptotic amplitude 

given by (V.3) can be converted to a rapidly convergent ser ies  of Bessel 

functions, the value of which differs from the quantity found combining 

approximations (B .1) and (B .2) by less  than a factor of 2, even when tl 

i s  a s  large as  4. 
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Table I .  Scattering Amplitudes for Se rbe r ' s  Yukawa Potential .  
klab = 11 GeV. 

Asymptotic 
e Avison WKB WKB 

30" 0.62 + 1.85i (lo- ')  0.551 + 1.41i 

Table 11. Scattering A m ~ l i t u d e  for Se rbe r ' s  Yukawa Potential  

Asymptotic 

9 Avison WKB WKB - 
30" 2.3 + 1.8i (10-3) 2.065 + 1.72i ( 1 0 - ~ )  



T a b l e  111. S c a t t e r i n g  Ampli tudes  Given by (V.5) and (V.2) fo r  Var ious  
Yukawa Potentials. 

klab = 30 GeV 

17 - (Y f - ( v . 5 )  - c m  f - ( v . 2 )  - 10-18 cm 

1.0  0.10 GeV 0.570 - 0.568i 0.696 - 0.657i 

2 .0  0.23 GeV 0.168 + 0.237i 0.105 + 0.261i 

3.5 0.33 GeV -0.016 + 0.168i -0.052 + 0.147i 
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FIGURE CAPTIONS 

Fig. 1. Contour C. 

Fig. 2 .  Contour D. 

Fig. 3. Modified contour C. 

Fig. 4. Contour E .  

Fig. 5.  Watson-Sommerfeld contour. 

Fig. 6. Differential c r o s s  section a s  a function of -t, klab = 11 GeV. 
The solid line is Avison's resul t ,  the dashed line i s  the scattering 
curve given by the WKB approximation, and the dotted line is the 
asymptotic form of the WKB approximation. 

Fig. 7. Differential c r o s s  section a s  a function of -t, klab = 30 GeV. 
The solid line is Avison's result ,  and the dashed line i s  the curve 
given by the WKB approximation. At 30 GeV the WKB approximation 
and i t s  asympotic form a r e  indistinguishable. 
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